Add experimental 'attention' crop strategy

This commit is contained in:
Lovell Fuller
2016-10-11 21:12:25 +01:00
parent 739178dd74
commit 18b9991fe7
21 changed files with 438 additions and 51 deletions

View File

Before

Width:  |  Height:  |  Size: 8.5 KiB

After

Width:  |  Height:  |  Size: 8.5 KiB

View File

Before

Width:  |  Height:  |  Size: 6.0 KiB

After

Width:  |  Height:  |  Size: 6.0 KiB

16
test/saliency/README.md Normal file
View File

@@ -0,0 +1,16 @@
# Crop strategy accuracy
1. Download the [MSRA Salient Object Database](http://research.microsoft.com/en-us/um/people/jiansun/SalientObject/salient_object.htm) (101MB).
2. Extract each image and its median human-labelled salient region.
3. Generate a test report of percentage deviance of top and left edges for each crop strategy, plus a naive centre gravity crop as "control".
```sh
git clone https://github.com/lovell/sharp.git
cd sharp/test/saliency
./download.sh
node report.js
python -m SimpleHTTPServer
```
The test report will then be available at
http://localhost:8000/report.html

25
test/saliency/download.sh Executable file
View File

@@ -0,0 +1,25 @@
#!/bin/sh
# Fetch and parse the MSRA Salient Object Database 'Image set B'
# http://research.microsoft.com/en-us/um/people/jiansun/salientobject/salient_object.htm
if [ ! -d Image ]; then
if [ ! -f ImageB.zip ]; then
echo "Downloading 5000 images (101MB)"
curl -O http://research.microsoft.com/en-us/um/people/jiansun/salientobject/ImageSetB/ImageB.zip
fi
unzip ImageB.zip
fi
if [ ! -d UserData ]; then
if [ ! -f UserDataB.zip ]; then
echo "Downloading human-labelled regions"
curl -O http://research.microsoft.com/en-us/um/people/jiansun/salientobject/ImageSetB/UserDataB.zip
fi
unzip UserDataB.zip
fi
if [ ! -f userData.json ]; then
echo "Processing human-labelled regions"
node userData.js
fi

View File

@@ -0,0 +1,39 @@
'use strict';
/*jshint esversion: 6 */
const fs = require('fs');
const request = require('request');
const tumblr = require('tumblr.js');
const client = tumblr.createClient({
consumer_key: '***',
consumer_secret: '***'
});
const fetchImages = function(offset) {
console.log(`Fetching offset ${offset}`);
client.posts('humanae', {
type: 'photo',
offset: offset
}, function (err, response) {
if (err) throw err;
if (response.posts.length > 0) {
response.posts.forEach((post) => {
const url = post.photos[0].alt_sizes
.filter((image) => image.width === 100)
.map((image) => image.url)
[0];
const filename = `./images/${post.id}.jpg`;
try {
fs.statSync(filename);
} catch (err) {
if (err.code === 'ENOENT') {
request(url).pipe(fs.createWriteStream(filename));
}
}
});
fetchImages(offset + 20);
}
});
};
fetchImages(0);

View File

@@ -0,0 +1,9 @@
{
"name": "sharp-crop-strategy-attention-model-humanae",
"version": "0.0.1",
"private": true,
"dependencies": {
"request": "^2.75.0",
"tumblr.js": "^1.1.1"
}
}

View File

@@ -0,0 +1,34 @@
'use strict';
/*jshint esversion: 6 */
const fs = require('fs');
const child_process = require('child_process');
const a = [];
const b = [];
fs.readdirSync('./images')
.filter((file) => file.endsWith('.jpg'))
.forEach((file) => {
// Extract one pixel, avoiding first DCT block, and return value of A and B channels
const command = `convert ./images/${file}[1x1+8+8] -colorspace lab -format "%[fx:u.g] %[fx:u.b]" info:`;
const result = child_process.execSync(command, { encoding: 'utf8' });
const ab = result.split(' ');
a.push(ab[0]);
b.push(ab[1]);
});
a.sort((v1, v2) => v1 - v2);
b.sort((v1, v2) => v1 - v2);
// Convert from 0..1 to -128..128
const convert = function(v) {
return Math.round(256 * (v - 0.5));
};
const threshold = Math.round(a.length / 100);
console.log(`Trimming lowest/highest ${threshold} for 98th percentile`);
// Ignore ~2% outliers
console.log(`a ${convert(a[threshold])} - ${convert(a[a.length - threshold])}`);
console.log(`b ${convert(b[threshold])} - ${convert(b[b.length - threshold])}`);

25
test/saliency/report.html Normal file
View File

@@ -0,0 +1,25 @@
<html>
<head>
<link href="https://cdnjs.cloudflare.com/ajax/libs/metrics-graphics/2.10.1/metricsgraphics.min.css" rel="stylesheet" type="text/css">
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/metrics-graphics/2.10.1/metricsgraphics.min.js"></script>
</head>
<body>
<div id="accuracy"></div>
<script>
d3.json('report.json', function(err, data) {
MG.data_graphic({
title: 'Crop accuracy',
data: data,
target: '#accuracy',
width: 960,
height: 600,
x_accessor: 'accuracy',
x_label: '% Accuracy',
y_accessor: ['centre', 'entropy', 'attention'],
legend: ['Centre', 'Entropy', 'Attention']
});
});
</script>
</body>
</html>

69
test/saliency/report.js Normal file
View File

@@ -0,0 +1,69 @@
'use strict';
/*jshint esversion: 6 */
const os = require('os');
const fs = require('fs');
const path = require('path');
const async = require('async');
const sharp = require('../../');
const crops = {
centre: sharp.gravity.centre,
entropy: sharp.strategy.entropy,
attention: sharp.strategy.attention
};
const concurrency = os.cpus().length;
const scores = {};
const incrementScore = function(accuracy, crop) {
if (typeof scores[accuracy] === 'undefined') {
scores[accuracy] = {};
}
if (typeof scores[accuracy][crop] === 'undefined') {
scores[accuracy][crop] = 0;
}
scores[accuracy][crop]++;
};
const userData = require('./userData.json');
const files = Object.keys(userData);
async.eachLimit(files, concurrency, function(file, done) {
const filename = path.join(__dirname, 'Image', file);
const salientWidth = userData[file].right - userData[file].left;
const salientHeight = userData[file].bottom - userData[file].top;
sharp(filename).metadata(function(err, metadata) {
if (err) console.log(err);
async.each(Object.keys(crops), function(crop, done) {
async.parallel([
// Left edge accuracy
function(done) {
sharp(filename).resize(salientWidth, metadata.height).crop(crops[crop]).toBuffer(function(err, data, info) {
const accuracy = Math.round(Math.abs(userData[file].left - info.cropCalcLeft) / (metadata.width - salientWidth) * 100);
incrementScore(accuracy, crop);
done();
});
},
// Top edge accuracy
function(done) {
sharp(filename).resize(metadata.width, salientHeight).crop(crops[crop]).toBuffer(function(err, data, info) {
const accuracy = Math.round(Math.abs(userData[file].top - info.cropCalcTop) / (metadata.height - salientHeight) * 100);
incrementScore(accuracy, crop);
done();
});
}
], done);
}, done);
});
}, function() {
const report = [];
Object.keys(scores).forEach(function(accuracy) {
report.push(
Object.assign({
accuracy: parseInt(accuracy, 10)
}, scores[accuracy])
);
});
fs.writeFileSync('report.json', JSON.stringify(report, null, 2));
});

69
test/saliency/userData.js Normal file
View File

@@ -0,0 +1,69 @@
'use strict';
/*jshint esversion: 6, loopfunc: true */
const fs = require('fs');
const path = require('path');
const userDataDir = 'UserData';
const images = {};
const median = function(values) {
values.sort(function(a,b) {
return a - b;
});
const half = Math.floor(values.length / 2);
if (values.length % 2) {
return values[half];
} else {
return Math.floor((values[half - 1] + values[half]) / 2);
}
};
// List of files
fs.readdirSync(userDataDir).forEach(function(file) {
// Contents of file
const lines = fs.readFileSync(path.join(userDataDir, file), {encoding: 'utf-8'}).split(/\r\n/);
// First line = number of entries
const entries = parseInt(lines[0], 10);
// Verify number of entries
if (entries !== 500) {
throw new Error('Expecting 500 images in ' + file + ', found ' + entries);
}
// Keep track of which line we're on
let linePos = 2;
for (let i = 0; i < entries; i++) {
// Get data for current image
const filename = lines[linePos].replace(/\\/, path.sep);
linePos = linePos + 2;
const regions = lines[linePos].split('; ');
linePos = linePos + 2;
// Parse human-labelled regions for min/max coords
const lefts = [], tops = [], rights = [], bottoms = [];
regions.forEach(function(region) {
if (region.indexOf(' ') !== -1) {
const coords = region.split(' ');
lefts.push(parseInt(coords[0], 10));
tops.push(parseInt(coords[1], 10));
rights.push(parseInt(coords[2], 10));
bottoms.push(parseInt(coords[3], 10));
}
});
// Add image
images[filename] = {
left: median(lefts),
top: median(tops),
right: median(rights),
bottom: median(bottoms)
};
}
});
// Verify number of images found
const imageCount = Object.keys(images).length;
if (imageCount === 5000) {
// Write output
fs.writeFileSync('userData.json', JSON.stringify(images, null, 2));
} else {
throw new Error('Expecting 5000 images, found ' + imageCount);
}

View File

@@ -29,6 +29,9 @@ describe('cpplint', function() {
},
whitespace: {
parens: false
},
runtime: {
indentation_namespace: false
}
}
}, function(err, report) {

View File

@@ -172,7 +172,9 @@ describe('Crop', function() {
assert.strictEqual(3, info.channels);
assert.strictEqual(80, info.width);
assert.strictEqual(320, info.height);
fixtures.assertSimilar(fixtures.expected('crop-entropy.jpg'), data, done);
assert.strictEqual(250, info.cropCalcLeft);
assert.strictEqual(0, info.cropCalcTop);
fixtures.assertSimilar(fixtures.expected('crop-strategy.jpg'), data, done);
});
});
@@ -186,10 +188,47 @@ describe('Crop', function() {
assert.strictEqual(4, info.channels);
assert.strictEqual(320, info.width);
assert.strictEqual(80, info.height);
fixtures.assertSimilar(fixtures.expected('crop-entropy.png'), data, done);
assert.strictEqual(0, info.cropCalcLeft);
assert.strictEqual(80, info.cropCalcTop);
fixtures.assertSimilar(fixtures.expected('crop-strategy.png'), data, done);
});
});
});
describe('Attention strategy', function() {
it('JPEG', function(done) {
sharp(fixtures.inputJpgWithCmykProfile)
.resize(80, 320)
.crop(sharp.strategy.attention)
.toBuffer(function(err, data, info) {
if (err) throw err;
assert.strictEqual('jpeg', info.format);
assert.strictEqual(3, info.channels);
assert.strictEqual(80, info.width);
assert.strictEqual(320, info.height);
assert.strictEqual(250, info.cropCalcLeft);
assert.strictEqual(0, info.cropCalcTop);
fixtures.assertSimilar(fixtures.expected('crop-strategy.jpg'), data, done);
});
});
it('PNG', function(done) {
sharp(fixtures.inputPngWithTransparency)
.resize(320, 80)
.crop(sharp.strategy.attention)
.toBuffer(function(err, data, info) {
if (err) throw err;
assert.strictEqual('png', info.format);
assert.strictEqual(4, info.channels);
assert.strictEqual(320, info.width);
assert.strictEqual(80, info.height);
assert.strictEqual(0, info.cropCalcLeft);
assert.strictEqual(80, info.cropCalcTop);
fixtures.assertSimilar(fixtures.expected('crop-strategy.png'), data, done);
});
});
});
});