mirror of
https://github.com/lovell/sharp.git
synced 2025-07-09 10:30:15 +02:00
Add convolve operation for kernel-based convolution (#479)
This commit is contained in:
parent
ba5a8b44ed
commit
b70a7d9a3b
15
docs/api.md
15
docs/api.md
@ -381,6 +381,21 @@ When a `sigma` is provided, performs a slower, more accurate Gaussian blur. This
|
||||
|
||||
* `sigma`, if present, is a Number between 0.3 and 1000 representing the sigma of the Gaussian mask, where `sigma = 1 + radius / 2`.
|
||||
|
||||
#### convolve(kernel)
|
||||
|
||||
Convolve the image with the specified `kernel`. The kernel specification takes the following form:
|
||||
|
||||
* `kernel = `
|
||||
`{ 'width': N`
|
||||
`, 'height': M`
|
||||
`, 'scale': Z`
|
||||
`, 'offset': Y`
|
||||
`, 'kernel':`
|
||||
` [ 1, 2, 3,`
|
||||
` 4, 5, 6,`
|
||||
` 7, 8, 9 ]`
|
||||
`}`
|
||||
|
||||
#### sharpen([sigma], [flat], [jagged])
|
||||
|
||||
When used without parameters, performs a fast, mild sharpen of the output image. This typically reduces performance by 10%.
|
||||
|
37
index.js
37
index.js
@ -448,6 +448,43 @@ Sharp.prototype.blur = function(sigma) {
|
||||
return this;
|
||||
};
|
||||
|
||||
/*
|
||||
Convolve the image with a kernel.
|
||||
Call with an object of the following form:
|
||||
{ 'width': N
|
||||
, 'height': M
|
||||
, 'scale': Z
|
||||
, 'offset': Y
|
||||
, 'kernel':
|
||||
[ 1, 2, 3,
|
||||
4, 5, 6,
|
||||
7, 8, 9 ]
|
||||
}
|
||||
*/
|
||||
|
||||
Sharp.prototype.convolve = function(kernel) {
|
||||
if (!isDefined(kernel) || !isDefined(kernel.kernel) ||
|
||||
!isDefined(kernel.width) || !isDefined(kernel.height) ||
|
||||
!inRange(kernel.width,3,1001) || !inRange(kernel.height,3,1001) ||
|
||||
kernel.height * kernel.width != kernel.kernel.length
|
||||
) {
|
||||
// must pass in a kernel
|
||||
throw new Error('Invalid convolution kernel');
|
||||
}
|
||||
if(!isDefined(kernel.scale)) {
|
||||
var sum = 0;
|
||||
kernel.kernel.forEach(function(e) {
|
||||
sum += e;
|
||||
});
|
||||
kernel.scale = sum;
|
||||
}
|
||||
if(!isDefined(kernel.offset)) {
|
||||
kernel.offset = 0;
|
||||
}
|
||||
this.options.convKernel = kernel;
|
||||
return this;
|
||||
};
|
||||
|
||||
/*
|
||||
Sharpen the output image.
|
||||
Call without a radius to use a fast, mild sharpen.
|
||||
|
@ -1,5 +1,6 @@
|
||||
#include <algorithm>
|
||||
#include <tuple>
|
||||
#include <memory>
|
||||
#include <vips/vips8>
|
||||
|
||||
#include "common.h"
|
||||
@ -211,6 +212,24 @@ namespace sharp {
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Convolution with a kernel.
|
||||
*/
|
||||
VImage Convolve(VImage image, int width, int height, double scale, double offset,
|
||||
const std::unique_ptr<double[]> &kernel_v) {
|
||||
VImage kernel = VImage::new_from_memory(
|
||||
kernel_v.get(),
|
||||
width * height * sizeof(double),
|
||||
width,
|
||||
height,
|
||||
1,
|
||||
VIPS_FORMAT_DOUBLE);
|
||||
kernel.set("scale", scale);
|
||||
kernel.set("offset", offset);
|
||||
|
||||
return image.conv(kernel);
|
||||
}
|
||||
|
||||
/*
|
||||
* Sharpen flat and jagged areas. Use sigma of -1.0 for fast sharpen.
|
||||
*/
|
||||
|
@ -2,6 +2,7 @@
|
||||
#define SRC_OPERATIONS_H_
|
||||
|
||||
#include <tuple>
|
||||
#include <memory>
|
||||
#include <vips/vips8>
|
||||
|
||||
using vips::VImage;
|
||||
@ -34,6 +35,12 @@ namespace sharp {
|
||||
*/
|
||||
VImage Blur(VImage image, double const sigma);
|
||||
|
||||
/*
|
||||
* Convolution with a kernel.
|
||||
*/
|
||||
VImage Convolve(VImage image, int width, int height, double scale, double offset,
|
||||
const std::unique_ptr<double[]> &kernel_v);
|
||||
|
||||
/*
|
||||
* Sharpen flat and jagged areas. Use sigma of -1.0 for fast sharpen.
|
||||
*/
|
||||
|
@ -2,6 +2,7 @@
|
||||
#include <cmath>
|
||||
#include <tuple>
|
||||
#include <utility>
|
||||
#include <memory>
|
||||
|
||||
#include <vips/vips8>
|
||||
|
||||
@ -49,6 +50,7 @@ using sharp::Cutout;
|
||||
using sharp::Normalize;
|
||||
using sharp::Gamma;
|
||||
using sharp::Blur;
|
||||
using sharp::Convolve;
|
||||
using sharp::Sharpen;
|
||||
using sharp::EntropyCrop;
|
||||
using sharp::TileCache;
|
||||
@ -464,11 +466,12 @@ class PipelineWorker : public AsyncWorker {
|
||||
|
||||
bool shouldAffineTransform = xresidual != 1.0 || yresidual != 1.0;
|
||||
bool shouldBlur = baton->blurSigma != 0.0;
|
||||
bool shouldConv = baton->convKernelWidth * baton->convKernelHeight > 0;
|
||||
bool shouldSharpen = baton->sharpenSigma != 0.0;
|
||||
bool shouldThreshold = baton->threshold != 0;
|
||||
bool shouldCutout = baton->overlayCutout;
|
||||
bool shouldPremultiplyAlpha = HasAlpha(image) &&
|
||||
(shouldAffineTransform || shouldBlur || shouldSharpen || (hasOverlay && !shouldCutout));
|
||||
(shouldAffineTransform || shouldBlur || shouldConv || shouldSharpen || (hasOverlay && !shouldCutout));
|
||||
|
||||
// Premultiply image alpha channel before all transformations to avoid
|
||||
// dark fringing around bright pixels
|
||||
@ -634,6 +637,14 @@ class PipelineWorker : public AsyncWorker {
|
||||
image = Blur(image, baton->blurSigma);
|
||||
}
|
||||
|
||||
// Convolve
|
||||
if (shouldConv) {
|
||||
image = Convolve(image,
|
||||
baton->convKernelWidth, baton->convKernelHeight,
|
||||
baton->convKernelScale, baton->convKernelOffset,
|
||||
baton->convKernel);
|
||||
}
|
||||
|
||||
// Sharpen
|
||||
if (shouldSharpen) {
|
||||
image = Sharpen(image, baton->sharpenSigma, baton->sharpenFlat, baton->sharpenJagged);
|
||||
@ -1151,6 +1162,22 @@ NAN_METHOD(pipeline) {
|
||||
} else {
|
||||
baton->tileLayout = VIPS_FOREIGN_DZ_LAYOUT_DZ;
|
||||
}
|
||||
// Convolution Kernel
|
||||
if(Has(options, New("convKernel").ToLocalChecked()).FromJust()) {
|
||||
Local<Object> kernel = Get(options, New("convKernel").ToLocalChecked()).ToLocalChecked().As<Object>();
|
||||
baton->convKernelWidth = attrAs<int32_t>(kernel, "width");
|
||||
baton->convKernelHeight = attrAs<int32_t>(kernel, "height");
|
||||
baton->convKernelScale = attrAs<double>(kernel, "scale");
|
||||
baton->convKernelOffset = attrAs<double>(kernel, "offset");
|
||||
|
||||
size_t kernelSize = baton->convKernelWidth * baton->convKernelHeight;
|
||||
|
||||
baton->convKernel = std::unique_ptr<double[]>(new double[kernelSize]);
|
||||
Local<Array> kdata = Get(kernel, New("kernel").ToLocalChecked()).ToLocalChecked().As<Array>();
|
||||
for(unsigned int i = 0; i < kernelSize; i++) {
|
||||
baton->convKernel[i] = To<double>(Get(kdata, i).ToLocalChecked()).FromJust();
|
||||
}
|
||||
}
|
||||
|
||||
// Function to notify of queue length changes
|
||||
Callback *queueListener = new Callback(
|
||||
|
@ -1,6 +1,8 @@
|
||||
#ifndef SRC_PIPELINE_H_
|
||||
#define SRC_PIPELINE_H_
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include <vips/vips8>
|
||||
|
||||
#include "nan.h"
|
||||
@ -83,6 +85,11 @@ struct PipelineBaton {
|
||||
std::string err;
|
||||
bool withMetadata;
|
||||
int withMetadataOrientation;
|
||||
std::unique_ptr<double[]> convKernel;
|
||||
int convKernelWidth;
|
||||
int convKernelHeight;
|
||||
double convKernelScale;
|
||||
double convKernelOffset;
|
||||
int tileSize;
|
||||
int tileOverlap;
|
||||
VipsForeignDzContainer tileContainer;
|
||||
@ -136,6 +143,10 @@ struct PipelineBaton {
|
||||
optimiseScans(false),
|
||||
withMetadata(false),
|
||||
withMetadataOrientation(-1),
|
||||
convKernelWidth(0),
|
||||
convKernelHeight(0),
|
||||
convKernelScale(0.0),
|
||||
convKernelOffset(0.0),
|
||||
tileSize(256),
|
||||
tileOverlap(0),
|
||||
tileContainer(VIPS_FOREIGN_DZ_CONTAINER_FS),
|
||||
|
BIN
test/fixtures/expected/conv-1.png
vendored
Normal file
BIN
test/fixtures/expected/conv-1.png
vendored
Normal file
Binary file not shown.
After Width: | Height: | Size: 807 B |
BIN
test/fixtures/expected/conv-2.png
vendored
Normal file
BIN
test/fixtures/expected/conv-2.png
vendored
Normal file
Binary file not shown.
After Width: | Height: | Size: 806 B |
3
test/fixtures/index.js
vendored
3
test/fixtures/index.js
vendored
@ -91,6 +91,9 @@ module.exports = {
|
||||
|
||||
inputJPGBig: getPath('flowers.jpeg'),
|
||||
|
||||
inputPngStripesV: getPath('stripesV.png'),
|
||||
inputPngStripesH: getPath('stripesH.png'),
|
||||
|
||||
outputJpg: getPath('output.jpg'),
|
||||
outputPng: getPath('output.png'),
|
||||
outputWebP: getPath('output.webp'),
|
||||
|
BIN
test/fixtures/stripesH.png
vendored
Normal file
BIN
test/fixtures/stripesH.png
vendored
Normal file
Binary file not shown.
After Width: | Height: | Size: 502 B |
BIN
test/fixtures/stripesV.png
vendored
Normal file
BIN
test/fixtures/stripesV.png
vendored
Normal file
Binary file not shown.
After Width: | Height: | Size: 624 B |
82
test/unit/convolve.js
Normal file
82
test/unit/convolve.js
Normal file
@ -0,0 +1,82 @@
|
||||
'use strict';
|
||||
|
||||
var assert = require('assert');
|
||||
|
||||
var sharp = require('../../index');
|
||||
var fixtures = require('../fixtures');
|
||||
|
||||
describe('Convolve', function() {
|
||||
|
||||
it('specific convolution kernel 1', function(done) {
|
||||
sharp(fixtures.inputPngStripesV)
|
||||
.resize(320, 240)
|
||||
.convolve(
|
||||
{
|
||||
'width': 3,
|
||||
'height': 3,
|
||||
'scale': 50,
|
||||
'offset': 0,
|
||||
'kernel': [ 10, 20, 10,
|
||||
0, 0, 0,
|
||||
10, 20, 10 ]
|
||||
})
|
||||
.toBuffer(function(err, data, info) {
|
||||
assert.strictEqual('png', info.format);
|
||||
assert.strictEqual(320, info.width);
|
||||
assert.strictEqual(240, info.height);
|
||||
fixtures.assertSimilar(fixtures.expected('conv-1.png'), data, done);
|
||||
});
|
||||
});
|
||||
|
||||
it('specific convolution kernel 2', function(done) {
|
||||
sharp(fixtures.inputPngStripesH)
|
||||
.resize(320, 240)
|
||||
.convolve(
|
||||
{
|
||||
'width': 3,
|
||||
'height': 3,
|
||||
'kernel': [ 1, 0, 1,
|
||||
2, 0, 2,
|
||||
1, 0, 1 ]
|
||||
})
|
||||
.toBuffer(function(err, data, info) {
|
||||
assert.strictEqual('png', info.format);
|
||||
assert.strictEqual(320, info.width);
|
||||
assert.strictEqual(240, info.height);
|
||||
fixtures.assertSimilar(fixtures.expected('conv-2.png'), data, done);
|
||||
});
|
||||
});
|
||||
|
||||
it('invalid kernel specification: no data', function() {
|
||||
assert.throws(function() {
|
||||
sharp(fixtures.inputJpg).convolve(
|
||||
{
|
||||
'width': 3,
|
||||
'height': 3,
|
||||
'kernel': []
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
it('invalid kernel specification: bad data format', function() {
|
||||
assert.throws(function() {
|
||||
sharp(fixtures.inputJpg).convolve(
|
||||
{
|
||||
'width': 3,
|
||||
'height': 3,
|
||||
'kernel': [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
it('invalid kernel specification: wrong width', function() {
|
||||
assert.throws(function() {
|
||||
sharp(fixtures.inputJpg).convolve(
|
||||
{
|
||||
'width': 3,
|
||||
'height': 4,
|
||||
'kernel': [1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
Loading…
x
Reference in New Issue
Block a user