#include #include #include #include #include "common.h" #include "operations.h" using vips::VImage; using vips::VError; namespace sharp { /* Alpha composite src over dst with given gravity. Assumes alpha channels are already premultiplied and will be unpremultiplied after. */ VImage Composite(VImage src, VImage dst, const int gravity) { if(IsInputValidForComposition(src, dst)) { // Enlarge overlay src, if required if (src.width() < dst.width() || src.height() < dst.height()) { // Calculate the (left, top) coordinates of the output image within the input image, applying the given gravity. int left; int top; std::tie(left, top) = CalculateCrop(dst.width(), dst.height(), src.width(), src.height(), gravity); // Embed onto transparent background std::vector background { 0.0, 0.0, 0.0, 0.0 }; src = src.embed(left, top, dst.width(), dst.height(), VImage::option() ->set("extend", VIPS_EXTEND_BACKGROUND) ->set("background", background) ); } return CompositeImage(src, dst); } // If the input was not valid for composition the return the input image itself return dst; } VImage Composite(VImage src, VImage dst, const int x, const int y) { if(IsInputValidForComposition(src, dst)) { // Enlarge overlay src, if required if (src.width() < dst.width() || src.height() < dst.height()) { // Calculate the (left, top) coordinates of the output image within the input image, applying the given gravity. int left; int top; std::tie(left, top) = CalculateCrop(dst.width(), dst.height(), src.width(), src.height(), x, y); // Embed onto transparent background std::vector background { 0.0, 0.0, 0.0, 0.0 }; src = src.embed(left, top, dst.width(), dst.height(), VImage::option() ->set("extend", VIPS_EXTEND_BACKGROUND) ->set("background", background) ); } return CompositeImage(src, dst); } // If the input was not valid for composition the return the input image itself return dst; } bool IsInputValidForComposition(VImage src, VImage dst) { using sharp::CalculateCrop; using sharp::HasAlpha; if (!HasAlpha(src)) { throw VError("Overlay image must have an alpha channel"); } if (!HasAlpha(dst)) { throw VError("Image to be overlaid must have an alpha channel"); } if (src.width() > dst.width() || src.height() > dst.height()) { throw VError("Overlay image must have same dimensions or smaller"); } return true; } VImage CompositeImage(VImage src, VImage dst) { // Split src into non-alpha and alpha channels VImage srcWithoutAlpha = src.extract_band(0, VImage::option()->set("n", src.bands() - 1)); VImage srcAlpha = src[src.bands() - 1] * (1.0 / 255.0); // Split dst into non-alpha and alpha channels VImage dstWithoutAlpha = dst.extract_band(0, VImage::option()->set("n", dst.bands() - 1)); VImage dstAlpha = dst[dst.bands() - 1] * (1.0 / 255.0); // // Compute normalized output alpha channel: // // References: // - http://en.wikipedia.org/wiki/Alpha_compositing#Alpha_blending // - https://github.com/jcupitt/ruby-vips/issues/28#issuecomment-9014826 // // out_a = src_a + dst_a * (1 - src_a) // ^^^^^^^^^^^ // t0 VImage t0 = srcAlpha.linear(-1.0, 1.0); VImage outAlphaNormalized = srcAlpha + dstAlpha * t0; // // Compute output RGB channels: // // Wikipedia: // out_rgb = (src_rgb * src_a + dst_rgb * dst_a * (1 - src_a)) / out_a // ^^^^^^^^^^^ // t0 // // Omit division by `out_a` since `Compose` is supposed to output a // premultiplied RGBA image as reversal of premultiplication is handled // externally. // VImage outRGBPremultiplied = srcWithoutAlpha + dstWithoutAlpha * t0; // Combine RGB and alpha channel into output image: return outRGBPremultiplied.bandjoin(outAlphaNormalized * 255.0); } /* Cutout src over dst with given gravity. */ VImage Cutout(VImage mask, VImage dst, const int gravity) { using sharp::CalculateCrop; using sharp::HasAlpha; using sharp::MaximumImageAlpha; bool maskHasAlpha = HasAlpha(mask); if (!maskHasAlpha && mask.bands() > 1) { throw VError("Overlay image must have an alpha channel or one band"); } if (!HasAlpha(dst)) { throw VError("Image to be overlaid must have an alpha channel"); } if (mask.width() > dst.width() || mask.height() > dst.height()) { throw VError("Overlay image must have same dimensions or smaller"); } // Enlarge overlay mask, if required if (mask.width() < dst.width() || mask.height() < dst.height()) { // Calculate the (left, top) coordinates of the output image within the input image, applying the given gravity. int left; int top; std::tie(left, top) = CalculateCrop(dst.width(), dst.height(), mask.width(), mask.height(), gravity); // Embed onto transparent background std::vector background { 0.0, 0.0, 0.0, 0.0 }; mask = mask.embed(left, top, dst.width(), dst.height(), VImage::option() ->set("extend", VIPS_EXTEND_BACKGROUND) ->set("background", background) ); } // we use the mask alpha if it has alpha if(maskHasAlpha) { mask = mask.extract_band(mask.bands() - 1, VImage::option()->set("n", 1));; } // Split dst into an optional alpha VImage dstAlpha = dst.extract_band(dst.bands() - 1, VImage::option()->set("n", 1)); // we use the dst non-alpha dst = dst.extract_band(0, VImage::option()->set("n", dst.bands() - 1)); // the range of the mask and the image need to match .. one could be // 16-bit, one 8-bit int dstMax = MaximumImageAlpha(dst.interpretation()); int maskMax = MaximumImageAlpha(mask.interpretation()); // combine the new mask and the existing alpha ... there are // many ways of doing this, mult is the simplest mask = dstMax * ((mask / maskMax) * (dstAlpha / dstMax)); // append the mask to the image data ... the mask might be float now, // we must cast the format down to match the image data return dst.bandjoin(mask.cast(dst.format())); } /* * Stretch luminance to cover full dynamic range. */ VImage Normalize(VImage image) { // Get original colourspace VipsInterpretation typeBeforeNormalize = image.interpretation(); if (typeBeforeNormalize == VIPS_INTERPRETATION_RGB) { typeBeforeNormalize = VIPS_INTERPRETATION_sRGB; } // Convert to LAB colourspace VImage lab = image.colourspace(VIPS_INTERPRETATION_LAB); // Extract luminance VImage luminance = lab[0]; // Find luminance range VImage stats = luminance.stats(); double min = stats(0, 0)[0]; double max = stats(1, 0)[0]; if (min != max) { // Extract chroma VImage chroma = lab.extract_band(1, VImage::option()->set("n", 2)); // Calculate multiplication factor and addition double f = 100.0 / (max - min); double a = -(min * f); // Scale luminance, join to chroma, convert back to original colourspace VImage normalized = luminance.linear(f, a).bandjoin(chroma).colourspace(typeBeforeNormalize); // Attach original alpha channel, if any if (HasAlpha(image)) { // Extract original alpha channel VImage alpha = image[image.bands() - 1]; // Join alpha channel to normalised image return normalized.bandjoin(alpha); } else { return normalized; } } return image; } /* * Gamma encoding/decoding */ VImage Gamma(VImage image, double const exponent) { if (HasAlpha(image)) { // Separate alpha channel VImage imageWithoutAlpha = image.extract_band(0, VImage::option()->set("n", image.bands() - 1)); VImage alpha = image[image.bands() - 1]; return imageWithoutAlpha.gamma(VImage::option()->set("exponent", exponent)).bandjoin(alpha); } else { return image.gamma(VImage::option()->set("exponent", exponent)); } } /* * Gaussian blur. Use sigma of -1.0 for fast blur. */ VImage Blur(VImage image, double const sigma) { if (sigma == -1.0) { // Fast, mild blur - averages neighbouring pixels VImage blur = VImage::new_matrixv(3, 3, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0); blur.set("scale", 9.0); return image.conv(blur); } else { // Slower, accurate Gaussian blur return image.gaussblur(sigma); } } /* * Convolution with a kernel. */ VImage Convolve(VImage image, int const width, int const height, double const scale, double const offset, std::unique_ptr const &kernel_v ) { VImage kernel = VImage::new_from_memory( kernel_v.get(), width * height * sizeof(double), width, height, 1, VIPS_FORMAT_DOUBLE); kernel.set("scale", scale); kernel.set("offset", offset); return image.conv(kernel); } /* * Sharpen flat and jagged areas. Use sigma of -1.0 for fast sharpen. */ VImage Sharpen(VImage image, double const sigma, double const flat, double const jagged) { if (sigma == -1.0) { // Fast, mild sharpen VImage sharpen = VImage::new_matrixv(3, 3, -1.0, -1.0, -1.0, -1.0, 32.0, -1.0, -1.0, -1.0, -1.0); sharpen.set("scale", 24.0); return image.conv(sharpen); } else { // Slow, accurate sharpen in LAB colour space, with control over flat vs jagged areas VipsInterpretation colourspaceBeforeSharpen = image.interpretation(); if (colourspaceBeforeSharpen == VIPS_INTERPRETATION_RGB) { colourspaceBeforeSharpen = VIPS_INTERPRETATION_sRGB; } return image.sharpen( VImage::option()->set("sigma", sigma)->set("m1", flat)->set("m2", jagged) ).colourspace(colourspaceBeforeSharpen); } } /* Calculate crop area based on image entropy */ std::tuple EntropyCrop(VImage image, int const outWidth, int const outHeight) { int left = 0; int top = 0; int const inWidth = image.width(); int const inHeight = image.height(); if (inWidth > outWidth) { // Reduce width by repeated removing slices from edge with lowest entropy int width = inWidth; double leftEntropy = 0.0; double rightEntropy = 0.0; // Max width of each slice int const maxSliceWidth = static_cast(ceil((inWidth - outWidth) / 8.0)); while (width > outWidth) { // Width of current slice int const slice = std::min(width - outWidth, maxSliceWidth); if (leftEntropy == 0.0) { // Update entropy of left slice leftEntropy = Entropy(image.extract_area(left, 0, slice, inHeight)); } if (rightEntropy == 0.0) { // Update entropy of right slice rightEntropy = Entropy(image.extract_area(width - slice - 1, 0, slice, inHeight)); } // Keep slice with highest entropy if (leftEntropy >= rightEntropy) { // Discard right slice rightEntropy = 0.0; } else { // Discard left slice leftEntropy = 0.0; left = left + slice; } width = width - slice; } } if (inHeight > outHeight) { // Reduce height by repeated removing slices from edge with lowest entropy int height = inHeight; double topEntropy = 0.0; double bottomEntropy = 0.0; // Max height of each slice int const maxSliceHeight = static_cast(ceil((inHeight - outHeight) / 8.0)); while (height > outHeight) { // Height of current slice int const slice = std::min(height - outHeight, maxSliceHeight); if (topEntropy == 0.0) { // Update entropy of top slice topEntropy = Entropy(image.extract_area(0, top, inWidth, slice)); } if (bottomEntropy == 0.0) { // Update entropy of bottom slice bottomEntropy = Entropy(image.extract_area(0, height - slice - 1, inWidth, slice)); } // Keep slice with highest entropy if (topEntropy >= bottomEntropy) { // Discard bottom slice bottomEntropy = 0.0; } else { // Discard top slice topEntropy = 0.0; top = top + slice; } height = height - slice; } } return std::make_tuple(left, top); } /* Calculate the Shannon entropy for an image */ double Entropy(VImage image) { return image.hist_find().hist_entropy(); } /* Insert a tile cache to prevent over-computation of any previous operations in the pipeline */ VImage TileCache(VImage image, double const factor) { int tile_width; int tile_height; int scanline_count; vips_get_tile_size(image.get_image(), &tile_width, &tile_height, &scanline_count); double const need_lines = 1.2 * scanline_count / factor; return image.tilecache(VImage::option() ->set("tile_width", image.width()) ->set("tile_height", 10) ->set("max_tiles", static_cast(round(1.0 + need_lines / 10.0))) ->set("access", VIPS_ACCESS_SEQUENTIAL) ->set("threaded", TRUE) ); } VImage Threshold(VImage image, double const threshold, bool const thresholdGrayscale) { if(!thresholdGrayscale) { return image >= threshold; } return image.colourspace(VIPS_INTERPRETATION_B_W) >= threshold; } /* Perform boolean/bitwise operation on image color channels - results in one channel image */ VImage Bandbool(VImage image, VipsOperationBoolean const boolean) { return image.bandbool(boolean); } /* Perform bitwise boolean operation between images */ VImage Boolean(VImage image, VImage imageR, VipsOperationBoolean const boolean) { return image.boolean(imageR, boolean); } VImage Trim(VImage image, int const tolerance) { using sharp::MaximumImageAlpha; // An equivalent of ImageMagick's -trim in C++ ... automatically remove // "boring" image edges. // We use .project to sum the rows and columns of a 0/255 mask image, the first // non-zero row or column is the object edge. We make the mask image with an // amount-different-from-background image plus a threshold. // find the value of the pixel at (0, 0) ... we will search for all pixels // significantly different from this std::vector background = image(0, 0); int max = MaximumImageAlpha(image.interpretation()); // we need to smooth the image, subtract the background from every pixel, take // the absolute value of the difference, then threshold VImage mask = (image.median(3) - background).abs() > (max * tolerance / 100); // sum mask rows and columns, then search for the first non-zero sum in each // direction VImage rows; VImage columns = mask.project(&rows); VImage profileLeftV; VImage profileLeftH = columns.profile(&profileLeftV); VImage profileRightV; VImage profileRightH = columns.fliphor().profile(&profileRightV); VImage profileTopV; VImage profileTopH = rows.profile(&profileTopV); VImage profileBottomV; VImage profileBottomH = rows.flipver().profile(&profileBottomV); int left = static_cast(floor(profileLeftV.min())); int right = columns.width() - static_cast(floor(profileRightV.min())); int top = static_cast(floor(profileTopH.min())); int bottom = rows.height() - static_cast(floor(profileBottomH.min())); int width = right - left; int height = bottom - top; if(width <= 0 || height <= 0) { throw VError("Unexpected error while trimming. Try to lower the tolerance"); } // and now crop the original image return image.extract_area(left, top, width, height); } } // namespace sharp