mirror of
https://github.com/lovell/sharp.git
synced 2025-07-09 10:30:15 +02:00
260 lines
6.7 KiB
JavaScript
260 lines
6.7 KiB
JavaScript
'use strict';
|
|
|
|
const assert = require('assert');
|
|
|
|
const sharp = require('../../');
|
|
const fixtures = require('../fixtures');
|
|
|
|
describe('Gaussian noise', function () {
|
|
it('generate single-channel gaussian noise', function (done) {
|
|
const output = fixtures.path('output.noise-1-channel.png');
|
|
const noise = sharp({
|
|
create: {
|
|
width: 1024,
|
|
height: 768,
|
|
channels: 1, // b-w
|
|
noise: {
|
|
type: 'gaussian',
|
|
mean: 128,
|
|
sigma: 30
|
|
}
|
|
}
|
|
}).toColourspace('b-w');
|
|
noise.toFile(output, function (err, info) {
|
|
if (err) throw err;
|
|
assert.strictEqual('png', info.format);
|
|
assert.strictEqual(1024, info.width);
|
|
assert.strictEqual(768, info.height);
|
|
assert.strictEqual(1, info.channels);
|
|
sharp(output).metadata(function (err, metadata) {
|
|
if (err) throw err;
|
|
assert.strictEqual('b-w', metadata.space);
|
|
assert.strictEqual('uchar', metadata.depth);
|
|
done();
|
|
});
|
|
});
|
|
});
|
|
|
|
it('generate 3-channels gaussian noise', function (done) {
|
|
const output = fixtures.path('output.noise-3-channels.png');
|
|
const noise = sharp({
|
|
create: {
|
|
width: 1024,
|
|
height: 768,
|
|
channels: 3, // sRGB
|
|
noise: {
|
|
type: 'gaussian',
|
|
mean: 128,
|
|
sigma: 30
|
|
}
|
|
}
|
|
});
|
|
noise.toFile(output, function (err, info) {
|
|
if (err) throw err;
|
|
assert.strictEqual('png', info.format);
|
|
assert.strictEqual(1024, info.width);
|
|
assert.strictEqual(768, info.height);
|
|
assert.strictEqual(3, info.channels);
|
|
sharp(output).metadata(function (err, metadata) {
|
|
if (err) throw err;
|
|
assert.strictEqual('srgb', metadata.space);
|
|
assert.strictEqual('uchar', metadata.depth);
|
|
done();
|
|
});
|
|
});
|
|
});
|
|
|
|
it('overlay 3-channels gaussian noise over image', function (done) {
|
|
const output = fixtures.path('output.noise-image.jpg');
|
|
const noise = sharp({
|
|
create: {
|
|
width: 320,
|
|
height: 240,
|
|
channels: 3,
|
|
noise: {
|
|
type: 'gaussian',
|
|
mean: 0,
|
|
sigma: 5
|
|
}
|
|
}
|
|
});
|
|
noise.toBuffer(function (err, data, info) {
|
|
if (err) throw err;
|
|
assert.strictEqual(3, info.channels);
|
|
sharp(fixtures.inputJpg)
|
|
.resize(320, 240)
|
|
.composite([
|
|
{
|
|
input: data,
|
|
blend: 'exclusion',
|
|
raw: {
|
|
width: info.width,
|
|
height: info.height,
|
|
channels: info.channels
|
|
}
|
|
}
|
|
])
|
|
.toFile(output, function (err, info) {
|
|
if (err) throw err;
|
|
assert.strictEqual('jpeg', info.format);
|
|
assert.strictEqual(320, info.width);
|
|
assert.strictEqual(240, info.height);
|
|
assert.strictEqual(3, info.channels);
|
|
// perceptual hashing detects that images are the same (difference is <=1%)
|
|
fixtures.assertSimilar(output, fixtures.inputJpg, function (err) {
|
|
if (err) throw err;
|
|
done();
|
|
});
|
|
});
|
|
});
|
|
});
|
|
|
|
it('overlay strong single-channel (sRGB) gaussian noise with 25% transparency over transparent png image', function (done) {
|
|
const output = fixtures.path('output.noise-image-transparent.png');
|
|
const width = 320;
|
|
const height = 240;
|
|
const rawData = {
|
|
width,
|
|
height,
|
|
channels: 1
|
|
};
|
|
const noise = sharp({
|
|
create: {
|
|
width,
|
|
height,
|
|
channels: 1,
|
|
noise: {
|
|
type: 'gaussian',
|
|
mean: 200,
|
|
sigma: 30
|
|
}
|
|
}
|
|
});
|
|
noise
|
|
.toColourspace('b-w')
|
|
.toBuffer(function (err, data, info) {
|
|
if (err) throw err;
|
|
assert.strictEqual(1, info.channels);
|
|
sharp(data, { raw: rawData })
|
|
.joinChannel(data, { raw: rawData }) // r channel
|
|
.joinChannel(data, { raw: rawData }) // b channel
|
|
.joinChannel(Buffer.alloc(width * height, 64), { raw: rawData }) // alpha channel
|
|
.toBuffer(function (err, data, info) {
|
|
if (err) throw err;
|
|
assert.strictEqual(4, info.channels);
|
|
sharp(fixtures.inputPngRGBWithAlpha)
|
|
.resize(width, height)
|
|
.composite([
|
|
{
|
|
input: data,
|
|
blend: 'exclusion',
|
|
raw: {
|
|
width: info.width,
|
|
height: info.height,
|
|
channels: info.channels
|
|
}
|
|
}
|
|
])
|
|
.toFile(output, function (err, info) {
|
|
if (err) throw err;
|
|
assert.strictEqual('png', info.format);
|
|
assert.strictEqual(width, info.width);
|
|
assert.strictEqual(height, info.height);
|
|
assert.strictEqual(4, info.channels);
|
|
fixtures.assertSimilar(output, fixtures.inputPngRGBWithAlpha, { threshold: 10 }, function (err) {
|
|
if (err) throw err;
|
|
done();
|
|
});
|
|
});
|
|
});
|
|
});
|
|
});
|
|
|
|
it('no create object properties specified', function () {
|
|
assert.throws(function () {
|
|
sharp({
|
|
create: {}
|
|
});
|
|
});
|
|
});
|
|
|
|
it('invalid noise object', function () {
|
|
assert.throws(function () {
|
|
sharp({
|
|
create: {
|
|
width: 100,
|
|
height: 100,
|
|
channels: 3,
|
|
noise: 'gaussian'
|
|
}
|
|
});
|
|
});
|
|
});
|
|
|
|
it('unknown type of noise', function () {
|
|
assert.throws(function () {
|
|
sharp({
|
|
create: {
|
|
width: 100,
|
|
height: 100,
|
|
channels: 3,
|
|
noise: {
|
|
type: 'unknown'
|
|
}
|
|
}
|
|
});
|
|
});
|
|
});
|
|
|
|
it('gaussian noise, invalid amount of channels', function () {
|
|
assert.throws(function () {
|
|
sharp({
|
|
create: {
|
|
width: 100,
|
|
height: 100,
|
|
channels: 5,
|
|
noise: {
|
|
type: 'gaussian',
|
|
mean: 5,
|
|
sigma: 10
|
|
}
|
|
}
|
|
});
|
|
});
|
|
});
|
|
|
|
it('gaussian noise, invalid mean', function () {
|
|
assert.throws(function () {
|
|
sharp({
|
|
create: {
|
|
width: 100,
|
|
height: 100,
|
|
channels: 1,
|
|
noise: {
|
|
type: 'gaussian',
|
|
mean: -1.5,
|
|
sigma: 10
|
|
}
|
|
}
|
|
});
|
|
});
|
|
});
|
|
|
|
it('gaussian noise, invalid sigma', function () {
|
|
assert.throws(function () {
|
|
sharp({
|
|
create: {
|
|
width: 100,
|
|
height: 100,
|
|
channels: 1,
|
|
noise: {
|
|
type: 'gaussian',
|
|
mean: 0,
|
|
sigma: -1.5
|
|
}
|
|
}
|
|
});
|
|
});
|
|
});
|
|
});
|