sharp/src/pipeline.cc

1231 lines
51 KiB
C++

#include <algorithm>
#include <cmath>
#include <tuple>
#include <utility>
#include <memory>
#include <numeric>
#include <map>
#include <vips/vips8>
#include <node.h>
#include "nan.h"
#include "common.h"
#include "operations.h"
#include "pipeline.h"
class PipelineWorker : public Nan::AsyncWorker {
public:
PipelineWorker(
Nan::Callback *callback, PipelineBaton *baton, Nan::Callback *queueListener,
std::vector<v8::Local<v8::Object>> const buffersToPersist
) : Nan::AsyncWorker(callback), baton(baton), queueListener(queueListener), buffersToPersist(buffersToPersist) {
// Protect Buffer objects from GC, keyed on index
std::accumulate(buffersToPersist.begin(), buffersToPersist.end(), 0,
[this](uint32_t index, v8::Local<v8::Object> const buffer) -> uint32_t {
SaveToPersistent(index, buffer);
return index + 1;
}
);
}
~PipelineWorker() {}
// libuv worker
void Execute() {
using sharp::HasAlpha;
using sharp::ImageType;
// Decrement queued task counter
g_atomic_int_dec_and_test(&sharp::counterQueue);
// Increment processing task counter
g_atomic_int_inc(&sharp::counterProcess);
std::map<VipsInterpretation, std::string> profileMap;
// Default sRGB ICC profile from https://packages.debian.org/sid/all/icc-profiles-free/filelist
profileMap.insert(
std::pair<VipsInterpretation, std::string>(VIPS_INTERPRETATION_sRGB,
baton->iccProfilePath + "sRGB.icc"));
// Convert to sRGB using default CMYK profile from http://www.argyllcms.com/cmyk.icm
profileMap.insert(
std::pair<VipsInterpretation, std::string>(VIPS_INTERPRETATION_CMYK,
baton->iccProfilePath + "cmyk.icm"));
try {
// Open input
vips::VImage image;
ImageType inputImageType;
std::tie(image, inputImageType) = sharp::OpenInput(baton->input, baton->accessMethod);
// Limit input images to a given number of pixels, where pixels = width * height
// Ignore if 0
if (baton->limitInputPixels > 0 && image.width() * image.height() > baton->limitInputPixels) {
(baton->err).append("Input image exceeds pixel limit");
return Error();
}
// Calculate angle of rotation
VipsAngle rotation;
bool flip;
bool flop;
std::tie(rotation, flip, flop) = CalculateRotationAndFlip(baton->angle, image);
if (flip && !baton->flip) {
// Add flip operation due to EXIF mirroring
baton->flip = TRUE;
}
if (flop && !baton->flop) {
// Add flip operation due to EXIF mirroring
baton->flop = TRUE;
}
// Rotate pre-extract
if (baton->rotateBeforePreExtract && rotation != VIPS_ANGLE_D0) {
image = image.rot(rotation);
sharp::RemoveExifOrientation(image);
}
// Trim
if(baton->trimTolerance != 0) {
image = sharp::Trim(image, baton->trimTolerance);
}
// Pre extraction
if (baton->topOffsetPre != -1) {
image = image.extract_area(baton->leftOffsetPre, baton->topOffsetPre, baton->widthPre, baton->heightPre);
}
// Get pre-resize image width and height
int inputWidth = image.width();
int inputHeight = image.height();
if (!baton->rotateBeforePreExtract &&
(rotation == VIPS_ANGLE_D90 || rotation == VIPS_ANGLE_D270)) {
// Swap input output width and height when rotating by 90 or 270 degrees
std::swap(inputWidth, inputHeight);
}
// Scaling calculations
double xfactor = 1.0;
double yfactor = 1.0;
int targetResizeWidth = baton->width;
int targetResizeHeight = baton->height;
if (baton->width > 0 && baton->height > 0) {
// Fixed width and height
xfactor = static_cast<double>(inputWidth) / static_cast<double>(baton->width);
yfactor = static_cast<double>(inputHeight) / static_cast<double>(baton->height);
switch (baton->canvas) {
case Canvas::CROP:
if (xfactor < yfactor) {
targetResizeHeight = static_cast<int>(round(static_cast<double>(inputHeight) / xfactor));
yfactor = xfactor;
} else {
targetResizeWidth = static_cast<int>(round(static_cast<double>(inputWidth) / yfactor));
xfactor = yfactor;
}
break;
case Canvas::EMBED:
if (xfactor > yfactor) {
targetResizeHeight = static_cast<int>(round(static_cast<double>(inputHeight) / xfactor));
yfactor = xfactor;
} else {
targetResizeWidth = static_cast<int>(round(static_cast<double>(inputWidth) / yfactor));
xfactor = yfactor;
}
break;
case Canvas::MAX:
if (xfactor > yfactor) {
targetResizeHeight = baton->height = static_cast<int>(round(static_cast<double>(inputHeight) / xfactor));
yfactor = xfactor;
} else {
targetResizeWidth = baton->width = static_cast<int>(round(static_cast<double>(inputWidth) / yfactor));
xfactor = yfactor;
}
break;
case Canvas::MIN:
if (xfactor < yfactor) {
targetResizeHeight = baton->height = static_cast<int>(round(static_cast<double>(inputHeight) / xfactor));
yfactor = xfactor;
} else {
targetResizeWidth = baton->width = static_cast<int>(round(static_cast<double>(inputWidth) / yfactor));
xfactor = yfactor;
}
break;
case Canvas::IGNORE_ASPECT:
if (!baton->rotateBeforePreExtract &&
(rotation == VIPS_ANGLE_D90 || rotation == VIPS_ANGLE_D270)) {
std::swap(xfactor, yfactor);
}
break;
}
} else if (baton->width > 0) {
// Fixed width
xfactor = static_cast<double>(inputWidth) / static_cast<double>(baton->width);
if (baton->canvas == Canvas::IGNORE_ASPECT) {
targetResizeHeight = baton->height = inputHeight;
} else {
// Auto height
yfactor = xfactor;
targetResizeHeight = baton->height = static_cast<int>(round(static_cast<double>(inputHeight) / yfactor));
}
} else if (baton->height > 0) {
// Fixed height
yfactor = static_cast<double>(inputHeight) / static_cast<double>(baton->height);
if (baton->canvas == Canvas::IGNORE_ASPECT) {
targetResizeWidth = baton->width = inputWidth;
} else {
// Auto width
xfactor = yfactor;
targetResizeWidth = baton->width = static_cast<int>(round(static_cast<double>(inputWidth) / xfactor));
}
} else {
// Identity transform
baton->width = inputWidth;
baton->height = inputHeight;
}
// Calculate integral box shrink
int xshrink = std::max(1, static_cast<int>(floor(xfactor)));
int yshrink = std::max(1, static_cast<int>(floor(yfactor)));
// Calculate residual float affine transformation
double xresidual = static_cast<double>(xshrink) / xfactor;
double yresidual = static_cast<double>(yshrink) / yfactor;
// Do not enlarge the output if the input width *or* height
// are already less than the required dimensions
if (baton->withoutEnlargement) {
if (inputWidth < baton->width || inputHeight < baton->height) {
xfactor = 1.0;
yfactor = 1.0;
xshrink = 1;
yshrink = 1;
xresidual = 1.0;
yresidual = 1.0;
baton->width = inputWidth;
baton->height = inputHeight;
}
}
// If integral x and y shrink are equal, try to use shrink-on-load for JPEG and WebP,
// but not when applying gamma correction or pre-resize extract
int shrink_on_load = 1;
if (
xshrink == yshrink && xshrink >= 2 &&
(inputImageType == ImageType::JPEG || inputImageType == ImageType::WEBP) &&
baton->gamma == 0 && baton->topOffsetPre == -1
) {
if (xshrink >= 8) {
xfactor = xfactor / 8;
yfactor = yfactor / 8;
shrink_on_load = 8;
} else if (xshrink >= 4) {
xfactor = xfactor / 4;
yfactor = yfactor / 4;
shrink_on_load = 4;
} else if (xshrink >= 2) {
xfactor = xfactor / 2;
yfactor = yfactor / 2;
shrink_on_load = 2;
}
}
if (shrink_on_load > 1) {
// Reload input using shrink-on-load
vips::VOption *option = VImage::option()->set("shrink", shrink_on_load);
if (baton->input->buffer != nullptr) {
VipsBlob *blob = vips_blob_new(nullptr, baton->input->buffer, baton->input->bufferLength);
if (inputImageType == ImageType::JPEG) {
// Reload JPEG buffer
image = VImage::jpegload_buffer(blob, option);
} else {
// Reload WebP buffer
image = VImage::webpload_buffer(blob, option);
}
vips_area_unref(reinterpret_cast<VipsArea*>(blob));
} else {
if (inputImageType == ImageType::JPEG) {
// Reload JPEG file
image = VImage::jpegload(const_cast<char*>(baton->input->file.data()), option);
} else {
// Reload WebP file
image = VImage::webpload(const_cast<char*>(baton->input->file.data()), option);
}
}
// Recalculate integral shrink and double residual
int shrunkOnLoadWidth = image.width();
int shrunkOnLoadHeight = image.height();
if (!baton->rotateBeforePreExtract &&
(rotation == VIPS_ANGLE_D90 || rotation == VIPS_ANGLE_D270)) {
// Swap input output width and height when rotating by 90 or 270 degrees
std::swap(shrunkOnLoadWidth, shrunkOnLoadHeight);
}
xfactor = static_cast<double>(shrunkOnLoadWidth) / static_cast<double>(targetResizeWidth);
yfactor = static_cast<double>(shrunkOnLoadHeight) / static_cast<double>(targetResizeHeight);
xshrink = std::max(1, static_cast<int>(floor(xfactor)));
yshrink = std::max(1, static_cast<int>(floor(yfactor)));
xresidual = static_cast<double>(xshrink) / xfactor;
yresidual = static_cast<double>(yshrink) / yfactor;
if (
!baton->rotateBeforePreExtract &&
(rotation == VIPS_ANGLE_D90 || rotation == VIPS_ANGLE_D270)
) {
std::swap(xresidual, yresidual);
}
}
// Ensure we're using a device-independent colour space
if (sharp::HasProfile(image)) {
// Convert to sRGB using embedded profile
try {
image = image.icc_transform(
const_cast<char*>(profileMap[VIPS_INTERPRETATION_sRGB].data()), VImage::option()
->set("embedded", TRUE)
->set("intent", VIPS_INTENT_PERCEPTUAL)
);
} catch(...) {
// Ignore failure of embedded profile
}
} else if (image.interpretation() == VIPS_INTERPRETATION_CMYK) {
image = image.icc_transform(
const_cast<char*>(profileMap[VIPS_INTERPRETATION_sRGB].data()), VImage::option()
->set("input_profile", profileMap[VIPS_INTERPRETATION_CMYK].data())
->set("intent", VIPS_INTENT_PERCEPTUAL)
);
}
// Calculate maximum alpha value based on input image pixel depth
double const maxAlpha = sharp::MaximumImageAlpha(image.interpretation());
// Flatten image to remove alpha channel
if (baton->flatten && HasAlpha(image)) {
// Scale up 8-bit values to match 16-bit input image
double const multiplier = sharp::Is16Bit(image.interpretation()) ? 256.0 : 1.0;
// Background colour
std::vector<double> background {
baton->background[0] * multiplier,
baton->background[1] * multiplier,
baton->background[2] * multiplier
};
image = image.flatten(VImage::option()
->set("background", background)
->set("max_alpha", maxAlpha)
);
}
// Negate the colours in the image
if (baton->negate) {
image = image.invert();
}
// Gamma encoding (darken)
if (baton->gamma >= 1 && baton->gamma <= 3) {
image = sharp::Gamma(image, 1.0 / baton->gamma);
}
// Convert to greyscale (linear, therefore after gamma encoding, if any)
if (baton->greyscale) {
image = image.colourspace(VIPS_INTERPRETATION_B_W);
}
if (xshrink > 1 || yshrink > 1) {
if (yshrink > 1) {
image = image.shrinkv(yshrink);
}
if (xshrink > 1) {
image = image.shrinkh(xshrink);
}
// Recalculate residual float based on dimensions of required vs shrunk images
int shrunkWidth = image.width();
int shrunkHeight = image.height();
if (!baton->rotateBeforePreExtract &&
(rotation == VIPS_ANGLE_D90 || rotation == VIPS_ANGLE_D270)) {
// Swap input output width and height when rotating by 90 or 270 degrees
std::swap(shrunkWidth, shrunkHeight);
}
xresidual = static_cast<double>(targetResizeWidth) / static_cast<double>(shrunkWidth);
yresidual = static_cast<double>(targetResizeHeight) / static_cast<double>(shrunkHeight);
if (
!baton->rotateBeforePreExtract &&
(rotation == VIPS_ANGLE_D90 || rotation == VIPS_ANGLE_D270)
) {
std::swap(xresidual, yresidual);
}
}
// Ensure image has an alpha channel when there is an overlay
bool hasOverlay = baton->overlay != nullptr;
if (hasOverlay && !HasAlpha(image)) {
double const multiplier = sharp::Is16Bit(image.interpretation()) ? 256.0 : 1.0;
image = image.bandjoin(
VImage::new_matrix(image.width(), image.height()).new_from_image(255 * multiplier)
);
}
bool shouldAffineTransform = xresidual != 1.0 || yresidual != 1.0;
bool shouldBlur = baton->blurSigma != 0.0;
bool shouldConv = baton->convKernelWidth * baton->convKernelHeight > 0;
bool shouldSharpen = baton->sharpenSigma != 0.0;
bool shouldCutout = baton->overlayCutout;
bool shouldPremultiplyAlpha = HasAlpha(image) &&
(shouldAffineTransform || shouldBlur || shouldConv || shouldSharpen || (hasOverlay && !shouldCutout));
// Premultiply image alpha channel before all transformations to avoid
// dark fringing around bright pixels
// See: http://entropymine.com/imageworsener/resizealpha/
if (shouldPremultiplyAlpha) {
image = image.premultiply(VImage::option()->set("max_alpha", maxAlpha));
}
// Use affine increase or kernel reduce with the remaining float part
if (shouldAffineTransform) {
// Insert tile cache to prevent over-computation of previous operations
if (baton->accessMethod == VIPS_ACCESS_SEQUENTIAL) {
image = sharp::TileCache(image, yresidual);
}
// Perform kernel-based reduction
if (yresidual < 1.0 || xresidual < 1.0) {
VipsKernel kernel = static_cast<VipsKernel>(
vips_enum_from_nick(nullptr, VIPS_TYPE_KERNEL, baton->kernel.data())
);
if (kernel != VIPS_KERNEL_CUBIC && kernel != VIPS_KERNEL_LANCZOS2 && kernel != VIPS_KERNEL_LANCZOS3) {
throw vips::VError("Unknown kernel");
}
if (yresidual < 1.0) {
image = image.reducev(1.0 / yresidual, VImage::option()
->set("kernel", kernel)
->set("centre", baton->centreSampling)
);
}
if (xresidual < 1.0) {
image = image.reduceh(1.0 / xresidual, VImage::option()
->set("kernel", kernel)
->set("centre", baton->centreSampling)
);
}
}
// Perform affine enlargement
if (yresidual > 1.0 || xresidual > 1.0) {
vips::VInterpolate interpolator = vips::VInterpolate::new_from_name(baton->interpolator.data());
if (yresidual > 1.0) {
image = image.affine({1.0, 0.0, 0.0, yresidual}, VImage::option()
->set("interpolate", interpolator)
);
}
if (xresidual > 1.0) {
image = image.affine({xresidual, 0.0, 0.0, 1.0}, VImage::option()
->set("interpolate", interpolator)
);
}
}
}
// Rotate
if (!baton->rotateBeforePreExtract && rotation != VIPS_ANGLE_D0) {
image = image.rot(rotation);
sharp::RemoveExifOrientation(image);
}
// Flip (mirror about Y axis)
if (baton->flip) {
image = image.flip(VIPS_DIRECTION_VERTICAL);
sharp::RemoveExifOrientation(image);
}
// Flop (mirror about X axis)
if (baton->flop) {
image = image.flip(VIPS_DIRECTION_HORIZONTAL);
sharp::RemoveExifOrientation(image);
}
// Join additional color channels to the image
if(baton->joinChannelIn.size() > 0) {
VImage joinImage;
ImageType joinImageType = ImageType::UNKNOWN;
for(unsigned int i = 0; i < baton->joinChannelIn.size(); i++) {
std::tie(joinImage, joinImageType) = sharp::OpenInput(baton->joinChannelIn[i], baton->accessMethod);
image = image.bandjoin(joinImage);
}
image = image.copy(VImage::option()->set("interpretation", baton->colourspace));
}
// Crop/embed
if (image.width() != baton->width || image.height() != baton->height) {
if (baton->canvas == Canvas::EMBED) {
// Scale up 8-bit values to match 16-bit input image
double const multiplier = sharp::Is16Bit(image.interpretation()) ? 256.0 : 1.0;
// Create background colour
std::vector<double> background;
if (image.bands() > 2) {
background = {
multiplier * baton->background[0],
multiplier * baton->background[1],
multiplier * baton->background[2]
};
} else {
// Convert sRGB to greyscale
background = { multiplier * (
0.2126 * baton->background[0] +
0.7152 * baton->background[1] +
0.0722 * baton->background[2]
)};
}
// Add alpha channel to background colour
if (baton->background[3] < 255.0 || HasAlpha(image)) {
background.push_back(baton->background[3] * multiplier);
}
// Add non-transparent alpha channel, if required
if (baton->background[3] < 255.0 && !HasAlpha(image)) {
image = image.bandjoin(
VImage::new_matrix(image.width(), image.height()).new_from_image(255 * multiplier)
);
}
// Embed
int left = static_cast<int>(round((baton->width - image.width()) / 2));
int top = static_cast<int>(round((baton->height - image.height()) / 2));
image = image.embed(left, top, baton->width, baton->height, VImage::option()
->set("extend", VIPS_EXTEND_BACKGROUND)
->set("background", background)
);
} else if (baton->canvas != Canvas::IGNORE_ASPECT) {
// Crop/max/min
int left;
int top;
if (baton->crop < 9) {
// Gravity-based crop
std::tie(left, top) = sharp::CalculateCrop(
image.width(), image.height(), baton->width, baton->height, baton->crop
);
} else if (baton->crop == 16) {
// Entropy-based crop
std::tie(left, top) = sharp::Crop(image, baton->width, baton->height, sharp::EntropyStrategy());
} else {
// Attention-based crop
std::tie(left, top) = sharp::Crop(image, baton->width, baton->height, sharp::AttentionStrategy());
}
int width = std::min(image.width(), baton->width);
int height = std::min(image.height(), baton->height);
image = image.extract_area(left, top, width, height);
baton->cropCalcLeft = left;
baton->cropCalcTop = top;
}
}
// Post extraction
if (baton->topOffsetPost != -1) {
image = image.extract_area(
baton->leftOffsetPost, baton->topOffsetPost, baton->widthPost, baton->heightPost
);
}
// Extend edges
if (baton->extendTop > 0 || baton->extendBottom > 0 || baton->extendLeft > 0 || baton->extendRight > 0) {
// Scale up 8-bit values to match 16-bit input image
double const multiplier = sharp::Is16Bit(image.interpretation()) ? 256.0 : 1.0;
// Create background colour
std::vector<double> background {
baton->background[0] * multiplier,
baton->background[1] * multiplier,
baton->background[2] * multiplier
};
// Add alpha channel to background colour
if (baton->background[3] < 255.0 || HasAlpha(image)) {
background.push_back(baton->background[3] * multiplier);
}
// Add non-transparent alpha channel, if required
if (baton->background[3] < 255.0 && !HasAlpha(image)) {
image = image.bandjoin(
VImage::new_matrix(image.width(), image.height()).new_from_image(255 * multiplier)
);
}
// Embed
baton->width = image.width() + baton->extendLeft + baton->extendRight;
baton->height = image.height() + baton->extendTop + baton->extendBottom;
image = image.embed(baton->extendLeft, baton->extendTop, baton->width, baton->height,
VImage::option()->set("extend", VIPS_EXTEND_BACKGROUND)->set("background", background));
}
// Threshold - must happen before blurring, due to the utility of blurring after thresholding
if (baton->threshold != 0) {
image = sharp::Threshold(image, baton->threshold, baton->thresholdGrayscale);
}
// Blur
if (shouldBlur) {
image = sharp::Blur(image, baton->blurSigma);
}
// Convolve
if (shouldConv) {
image = sharp::Convolve(image,
baton->convKernelWidth, baton->convKernelHeight,
baton->convKernelScale, baton->convKernelOffset,
baton->convKernel
);
}
// Sharpen
if (shouldSharpen) {
image = sharp::Sharpen(image, baton->sharpenSigma, baton->sharpenFlat, baton->sharpenJagged);
}
// Composite with overlay, if present
if (hasOverlay) {
VImage overlayImage;
ImageType overlayImageType = ImageType::UNKNOWN;
std::tie(overlayImage, overlayImageType) = OpenInput(baton->overlay, baton->accessMethod);
// Check if overlay is tiled
if (baton->overlayTile) {
int const overlayImageWidth = overlayImage.width();
int const overlayImageHeight = overlayImage.height();
int across = 0;
int down = 0;
// Use gravity in overlay
if (overlayImageWidth <= baton->width) {
across = static_cast<int>(ceil(static_cast<double>(image.width()) / overlayImageWidth));
}
if (overlayImageHeight <= baton->height) {
down = static_cast<int>(ceil(static_cast<double>(image.height()) / overlayImageHeight));
}
if (across != 0 || down != 0) {
int left;
int top;
overlayImage = overlayImage.replicate(across, down);
if (baton->overlayXOffset >= 0 && baton->overlayYOffset >= 0) {
// the overlayX/YOffsets will now be used to CalculateCrop for extract_area
std::tie(left, top) = sharp::CalculateCrop(
overlayImage.width(), overlayImage.height(), image.width(), image.height(),
baton->overlayXOffset, baton->overlayYOffset
);
} else {
// the overlayGravity will now be used to CalculateCrop for extract_area
std::tie(left, top) = sharp::CalculateCrop(
overlayImage.width(), overlayImage.height(), image.width(), image.height(), baton->overlayGravity
);
}
overlayImage = overlayImage.extract_area(
left, top, image.width(), image.height()
);
}
// the overlayGravity was used for extract_area, therefore set it back to its default value of 0
baton->overlayGravity = 0;
}
if (shouldCutout) {
// 'cut out' the image, premultiplication is not required
image = sharp::Cutout(overlayImage, image, baton->overlayGravity);
} else {
// Ensure overlay has alpha channel
if (!HasAlpha(overlayImage)) {
double const multiplier = sharp::Is16Bit(overlayImage.interpretation()) ? 256.0 : 1.0;
overlayImage = overlayImage.bandjoin(
VImage::new_matrix(overlayImage.width(), overlayImage.height()).new_from_image(255 * multiplier)
);
}
// Ensure image has alpha channel
if (!HasAlpha(image)) {
double const multiplier = sharp::Is16Bit(image.interpretation()) ? 256.0 : 1.0;
image = image.bandjoin(
VImage::new_matrix(image.width(), image.height()).new_from_image(255 * multiplier)
);
}
// Ensure overlay is premultiplied sRGB
overlayImage = overlayImage.colourspace(VIPS_INTERPRETATION_sRGB).premultiply();
if (baton->overlayXOffset >= 0 && baton->overlayYOffset >= 0) {
// Composite images with given offsets
image = sharp::Composite(overlayImage, image, baton->overlayXOffset, baton->overlayYOffset);
} else {
// Composite images with given gravity
image = sharp::Composite(overlayImage, image, baton->overlayGravity);
}
}
}
// Reverse premultiplication after all transformations:
if (shouldPremultiplyAlpha) {
image = image.unpremultiply(VImage::option()->set("max_alpha", maxAlpha));
// Cast pixel values to integer
if (sharp::Is16Bit(image.interpretation())) {
image = image.cast(VIPS_FORMAT_USHORT);
} else {
image = image.cast(VIPS_FORMAT_UCHAR);
}
}
// Gamma decoding (brighten)
if (baton->gamma >= 1 && baton->gamma <= 3) {
image = sharp::Gamma(image, baton->gamma);
}
// Apply normalisation - stretch luminance to cover full dynamic range
if (baton->normalise) {
image = sharp::Normalise(image);
}
// Apply bitwise boolean operation between images
if (baton->boolean != nullptr) {
VImage booleanImage;
ImageType booleanImageType = ImageType::UNKNOWN;
std::tie(booleanImage, booleanImageType) = sharp::OpenInput(baton->boolean, baton->accessMethod);
image = sharp::Boolean(image, booleanImage, baton->booleanOp);
}
// Apply per-channel Bandbool bitwise operations after all other operations
if (baton->bandBoolOp >= VIPS_OPERATION_BOOLEAN_AND && baton->bandBoolOp < VIPS_OPERATION_BOOLEAN_LAST) {
image = sharp::Bandbool(image, baton->bandBoolOp);
}
// Extract an image channel (aka vips band)
if(baton->extractChannel > -1) {
if(baton->extractChannel >= image.bands()) {
(baton->err).append("Cannot extract channel from image. Too few channels in image.");
return Error();
}
image = image.extract_band(baton->extractChannel);
}
// Convert image to sRGB, if not already
if (sharp::Is16Bit(image.interpretation())) {
image = image.cast(VIPS_FORMAT_USHORT);
}
if (image.interpretation() != baton->colourspace) {
// Need to convert image
image = image.colourspace(baton->colourspace);
// Transform colours from embedded profile to output profile
if (baton->withMetadata &&
sharp::HasProfile(image) &&
profileMap[baton->colourspace] != std::string()) {
image = image.icc_transform(const_cast<char*>(profileMap[baton->colourspace].data()),
VImage::option()->set("embedded", TRUE)
);
}
}
// Override EXIF Orientation tag
if (baton->withMetadata && baton->withMetadataOrientation != -1) {
sharp::SetExifOrientation(image, baton->withMetadataOrientation);
}
// Number of channels used in output image
baton->channels = image.bands();
baton->width = image.width();
baton->height = image.height();
// Output
if (baton->fileOut == "") {
// Buffer output
if (baton->formatOut == "jpeg" || (baton->formatOut == "input" && inputImageType == ImageType::JPEG)) {
// Write JPEG to buffer
VipsArea *area = VIPS_AREA(image.jpegsave_buffer(VImage::option()
->set("strip", !baton->withMetadata)
->set("Q", baton->jpegQuality)
->set("interlace", baton->jpegProgressive)
->set("no_subsample", baton->jpegChromaSubsampling == "4:4:4")
->set("trellis_quant", baton->jpegTrellisQuantisation)
->set("overshoot_deringing", baton->jpegOvershootDeringing)
->set("optimize_scans", baton->jpegOptimiseScans)
->set("optimize_coding", TRUE)
));
baton->bufferOut = static_cast<char*>(area->data);
baton->bufferOutLength = area->length;
area->free_fn = nullptr;
vips_area_unref(area);
baton->formatOut = "jpeg";
if(baton->colourspace == VIPS_INTERPRETATION_CMYK) {
baton->channels = std::min(baton->channels, 4);
} else {
baton->channels = std::min(baton->channels, 3);
}
} else if (baton->formatOut == "png" || (baton->formatOut == "input" && inputImageType == ImageType::PNG)) {
// Strip profile
if (!baton->withMetadata) {
vips_image_remove(image.get_image(), VIPS_META_ICC_NAME);
}
// Write PNG to buffer
VipsArea *area = VIPS_AREA(image.pngsave_buffer(VImage::option()
->set("interlace", baton->pngProgressive)
->set("compression", baton->pngCompressionLevel)
->set("filter", baton->pngAdaptiveFiltering ?
VIPS_FOREIGN_PNG_FILTER_ALL : VIPS_FOREIGN_PNG_FILTER_NONE )
));
baton->bufferOut = static_cast<char*>(area->data);
baton->bufferOutLength = area->length;
area->free_fn = nullptr;
vips_area_unref(area);
baton->formatOut = "png";
} else if (baton->formatOut == "webp" || (baton->formatOut == "input" && inputImageType == ImageType::WEBP)) {
// Write WEBP to buffer
VipsArea *area = VIPS_AREA(image.webpsave_buffer(VImage::option()
->set("strip", !baton->withMetadata)
->set("Q", baton->webpQuality)
));
baton->bufferOut = static_cast<char*>(area->data);
baton->bufferOutLength = area->length;
area->free_fn = nullptr;
vips_area_unref(area);
baton->formatOut = "webp";
} else if (baton->formatOut == "raw" || (baton->formatOut == "input" && inputImageType == ImageType::RAW)) {
// Write raw, uncompressed image data to buffer
if (baton->greyscale || image.interpretation() == VIPS_INTERPRETATION_B_W) {
// Extract first band for greyscale image
image = image[0];
}
if (image.format() != VIPS_FORMAT_UCHAR) {
// Cast pixels to uint8 (unsigned char)
image = image.cast(VIPS_FORMAT_UCHAR);
}
// Get raw image data
baton->bufferOut = static_cast<char*>(image.write_to_memory(&baton->bufferOutLength));
if (baton->bufferOut == nullptr) {
(baton->err).append("Could not allocate enough memory for raw output");
return Error();
}
baton->formatOut = "raw";
} else {
// Unsupported output format
(baton->err).append("Unsupported output format ");
if (baton->formatOut == "input") {
(baton->err).append(ImageTypeId(inputImageType));
} else {
(baton->err).append(baton->formatOut);
}
return Error();
}
} else {
// File output
bool const isJpeg = sharp::IsJpeg(baton->fileOut);
bool const isPng = sharp::IsPng(baton->fileOut);
bool const isWebp = sharp::IsWebp(baton->fileOut);
bool const isTiff = sharp::IsTiff(baton->fileOut);
bool const isDz = sharp::IsDz(baton->fileOut);
bool const isDzZip = sharp::IsDzZip(baton->fileOut);
bool const isV = sharp::IsV(baton->fileOut);
bool const matchInput = baton->formatOut == "input" &&
!(isJpeg || isPng || isWebp || isTiff || isDz || isDzZip || isV);
if (baton->formatOut == "jpeg" || isJpeg || (matchInput && inputImageType == ImageType::JPEG)) {
// Write JPEG to file
image.jpegsave(const_cast<char*>(baton->fileOut.data()), VImage::option()
->set("strip", !baton->withMetadata)
->set("Q", baton->jpegQuality)
->set("interlace", baton->jpegProgressive)
->set("no_subsample", baton->jpegChromaSubsampling == "4:4:4")
->set("trellis_quant", baton->jpegTrellisQuantisation)
->set("overshoot_deringing", baton->jpegOvershootDeringing)
->set("optimize_scans", baton->jpegOptimiseScans)
->set("optimize_coding", TRUE)
);
baton->formatOut = "jpeg";
baton->channels = std::min(baton->channels, 3);
} else if (baton->formatOut == "png" || isPng || (matchInput && inputImageType == ImageType::PNG)) {
// Strip profile
if (!baton->withMetadata) {
vips_image_remove(image.get_image(), VIPS_META_ICC_NAME);
}
// Write PNG to file
image.pngsave(const_cast<char*>(baton->fileOut.data()), VImage::option()
->set("interlace", baton->pngProgressive)
->set("compression", baton->pngCompressionLevel)
->set("filter", baton->pngAdaptiveFiltering ?
VIPS_FOREIGN_PNG_FILTER_ALL : VIPS_FOREIGN_PNG_FILTER_NONE )
);
baton->formatOut = "png";
} else if (baton->formatOut == "webp" || isWebp || (matchInput && inputImageType == ImageType::WEBP)) {
// Write WEBP to file
image.webpsave(const_cast<char*>(baton->fileOut.data()), VImage::option()
->set("strip", !baton->withMetadata)
->set("Q", baton->webpQuality)
);
baton->formatOut = "webp";
} else if (baton->formatOut == "tiff" || isTiff || (matchInput && inputImageType == ImageType::TIFF)) {
// Write TIFF to file
image.tiffsave(const_cast<char*>(baton->fileOut.data()), VImage::option()
->set("strip", !baton->withMetadata)
->set("Q", baton->tiffQuality)
->set("compression", VIPS_FOREIGN_TIFF_COMPRESSION_JPEG)
);
baton->formatOut = "tiff";
baton->channels = std::min(baton->channels, 3);
} else if (baton->formatOut == "dz" || isDz || isDzZip) {
if (isDzZip) {
baton->tileContainer = VIPS_FOREIGN_DZ_CONTAINER_ZIP;
}
// Forward format options through suffix
std::string suffix;
if (baton->tileFormat == "png") {
std::vector<std::pair<std::string, std::string>> options {
{"interlace", baton->pngProgressive ? "TRUE" : "FALSE"},
{"compression", std::to_string(baton->pngCompressionLevel)},
{"filter", baton->pngAdaptiveFiltering ? "all" : "none"}
};
suffix = AssembleSuffixString(".png", options);
} else if (baton->tileFormat == "webp") {
std::vector<std::pair<std::string, std::string>> options {
{"Q", std::to_string(baton->webpQuality)}
};
suffix = AssembleSuffixString(".webp", options);
} else {
std::string extname = baton->tileLayout == VIPS_FOREIGN_DZ_LAYOUT_GOOGLE
|| baton->tileLayout == VIPS_FOREIGN_DZ_LAYOUT_ZOOMIFY
? ".jpg" : ".jpeg";
std::vector<std::pair<std::string, std::string>> options {
{"Q", std::to_string(baton->jpegQuality)},
{"interlace", baton->jpegProgressive ? "TRUE" : "FALSE"},
{"no_subsample", baton->jpegChromaSubsampling == "4:4:4" ? "TRUE": "FALSE"},
{"trellis_quant", baton->jpegTrellisQuantisation ? "TRUE" : "FALSE"},
{"overshoot_deringing", baton->jpegOvershootDeringing ? "TRUE": "FALSE"},
{"optimize_scans", baton->jpegOptimiseScans ? "TRUE": "FALSE"},
{"optimize_coding", "TRUE"}
};
suffix = AssembleSuffixString(extname, options);
}
// Write DZ to file
image.dzsave(const_cast<char*>(baton->fileOut.data()), VImage::option()
->set("strip", !baton->withMetadata)
->set("tile_size", baton->tileSize)
->set("overlap", baton->tileOverlap)
->set("container", baton->tileContainer)
->set("layout", baton->tileLayout)
->set("suffix", const_cast<char*>(suffix.data()))
);
baton->formatOut = "dz";
} else if (baton->formatOut == "v" || isV || (matchInput && inputImageType == ImageType::VIPS)) {
// Write V to file
image.vipssave(const_cast<char*>(baton->fileOut.data()), VImage::option()
->set("strip", !baton->withMetadata)
);
baton->formatOut = "v";
} else {
// Unsupported output format
(baton->err).append("Unsupported output format " + baton->fileOut);
return Error();
}
}
} catch (vips::VError const &err) {
(baton->err).append(err.what());
}
// Clean up libvips' per-request data and threads
vips_error_clear();
vips_thread_shutdown();
}
void HandleOKCallback () {
using Nan::New;
using Nan::Set;
Nan::HandleScope();
v8::Local<v8::Value> argv[3] = { Nan::Null(), Nan::Null(), Nan::Null() };
if (!baton->err.empty()) {
// Error
argv[0] = Nan::Error(baton->err.data());
} else {
int width = baton->width;
int height = baton->height;
if (baton->topOffsetPre != -1 && (baton->width == -1 || baton->height == -1)) {
width = baton->widthPre;
height = baton->heightPre;
}
if (baton->topOffsetPost != -1) {
width = baton->widthPost;
height = baton->heightPost;
}
// Info Object
v8::Local<v8::Object> info = New<v8::Object>();
Set(info, New("format").ToLocalChecked(), New<v8::String>(baton->formatOut).ToLocalChecked());
Set(info, New("width").ToLocalChecked(), New<v8::Uint32>(static_cast<uint32_t>(width)));
Set(info, New("height").ToLocalChecked(), New<v8::Uint32>(static_cast<uint32_t>(height)));
Set(info, New("channels").ToLocalChecked(), New<v8::Uint32>(static_cast<uint32_t>(baton->channels)));
if (baton->cropCalcLeft != -1 && baton->cropCalcLeft != -1) {
Set(info, New("cropCalcLeft").ToLocalChecked(), New<v8::Uint32>(static_cast<uint32_t>(baton->cropCalcLeft)));
Set(info, New("cropCalcTop").ToLocalChecked(), New<v8::Uint32>(static_cast<uint32_t>(baton->cropCalcTop)));
}
if (baton->bufferOutLength > 0) {
// Pass ownership of output data to Buffer instance
argv[1] = Nan::NewBuffer(
static_cast<char*>(baton->bufferOut), baton->bufferOutLength, sharp::FreeCallback, nullptr
).ToLocalChecked();
// Add buffer size to info
Set(info, New("size").ToLocalChecked(), New<v8::Uint32>(static_cast<uint32_t>(baton->bufferOutLength)));
argv[2] = info;
} else {
// Add file size to info
GStatBuf st;
if (g_stat(baton->fileOut.data(), &st) == 0) {
Set(info, New("size").ToLocalChecked(), New<v8::Uint32>(static_cast<uint32_t>(st.st_size)));
}
argv[1] = info;
}
}
// Dispose of Persistent wrapper around input Buffers so they can be garbage collected
std::accumulate(buffersToPersist.begin(), buffersToPersist.end(), 0,
[this](uint32_t index, v8::Local<v8::Object> const buffer) -> uint32_t {
GetFromPersistent(index);
return index + 1;
}
);
delete baton->input;
delete baton->overlay;
delete baton->boolean;
for_each(baton->joinChannelIn.begin(), baton->joinChannelIn.end(),
[this](sharp::InputDescriptor *joinChannelIn) {
delete joinChannelIn;
}
);
delete baton;
// Decrement processing task counter
g_atomic_int_dec_and_test(&sharp::counterProcess);
v8::Local<v8::Value> queueLength[1] = { New<v8::Uint32>(sharp::counterQueue) };
queueListener->Call(1, queueLength);
delete queueListener;
// Return to JavaScript
callback->Call(3, argv);
}
private:
PipelineBaton *baton;
Nan::Callback *queueListener;
std::vector<v8::Local<v8::Object>> buffersToPersist;
/*
Calculate the angle of rotation and need-to-flip for the output image.
In order of priority:
1. Use explicitly requested angle (supports 90, 180, 270)
2. Use input image EXIF Orientation header - supports mirroring
3. Otherwise default to zero, i.e. no rotation
*/
std::tuple<VipsAngle, bool, bool>
CalculateRotationAndFlip(int const angle, vips::VImage image) {
VipsAngle rotate = VIPS_ANGLE_D0;
bool flip = FALSE;
bool flop = FALSE;
if (angle == -1) {
switch(sharp::ExifOrientation(image)) {
case 6: rotate = VIPS_ANGLE_D90; break;
case 3: rotate = VIPS_ANGLE_D180; break;
case 8: rotate = VIPS_ANGLE_D270; break;
case 2: flop = TRUE; break; // flop 1
case 7: flip = TRUE; rotate = VIPS_ANGLE_D90; break; // flip 6
case 4: flop = TRUE; rotate = VIPS_ANGLE_D180; break; // flop 3
case 5: flip = TRUE; rotate = VIPS_ANGLE_D270; break; // flip 8
}
} else {
if (angle == 90) {
rotate = VIPS_ANGLE_D90;
} else if (angle == 180) {
rotate = VIPS_ANGLE_D180;
} else if (angle == 270) {
rotate = VIPS_ANGLE_D270;
}
}
return std::make_tuple(rotate, flip, flop);
}
/*
Assemble the suffix argument to dzsave, which is the format (by extname)
alongisde comma-separated arguments to the corresponding `formatsave` vips
action.
*/
std::string
AssembleSuffixString(std::string extname, std::vector<std::pair<std::string, std::string>> options) {
std::string argument;
for (auto const &option : options) {
if (!argument.empty()) {
argument += ",";
}
argument += option.first + "=" + option.second;
}
return extname + "[" + argument + "]";
}
/*
Clear all thread-local data.
*/
void Error() {
// Clean up libvips' per-request data and threads
vips_error_clear();
vips_thread_shutdown();
}
};
/*
pipeline(options, output, callback)
*/
NAN_METHOD(pipeline) {
using sharp::HasAttr;
using sharp::AttrTo;
using sharp::AttrAs;
using sharp::AttrAsStr;
using sharp::CreateInputDescriptor;
// Input Buffers must not undergo GC compaction during processing
std::vector<v8::Local<v8::Object>> buffersToPersist;
// V8 objects are converted to non-V8 types held in the baton struct
PipelineBaton *baton = new PipelineBaton;
v8::Local<v8::Object> options = info[0].As<v8::Object>();
// Input
baton->input = CreateInputDescriptor(AttrAs<v8::Object>(options, "input"), buffersToPersist);
// ICC profile to use when input CMYK image has no embedded profile
baton->iccProfilePath = AttrAsStr(options, "iccProfilePath");
baton->accessMethod = AttrTo<bool>(options, "sequentialRead") ?
VIPS_ACCESS_SEQUENTIAL : VIPS_ACCESS_RANDOM;
// Limit input images to a given number of pixels, where pixels = width * height
baton->limitInputPixels = AttrTo<int32_t>(options, "limitInputPixels");
// Extract image options
baton->topOffsetPre = AttrTo<int32_t>(options, "topOffsetPre");
baton->leftOffsetPre = AttrTo<int32_t>(options, "leftOffsetPre");
baton->widthPre = AttrTo<int32_t>(options, "widthPre");
baton->heightPre = AttrTo<int32_t>(options, "heightPre");
baton->topOffsetPost = AttrTo<int32_t>(options, "topOffsetPost");
baton->leftOffsetPost = AttrTo<int32_t>(options, "leftOffsetPost");
baton->widthPost = AttrTo<int32_t>(options, "widthPost");
baton->heightPost = AttrTo<int32_t>(options, "heightPost");
// Output image dimensions
baton->width = AttrTo<int32_t>(options, "width");
baton->height = AttrTo<int32_t>(options, "height");
// Canvas option
std::string canvas = AttrAsStr(options, "canvas");
if (canvas == "crop") {
baton->canvas = Canvas::CROP;
} else if (canvas == "embed") {
baton->canvas = Canvas::EMBED;
} else if (canvas == "max") {
baton->canvas = Canvas::MAX;
} else if (canvas == "min") {
baton->canvas = Canvas::MIN;
} else if (canvas == "ignore_aspect") {
baton->canvas = Canvas::IGNORE_ASPECT;
}
// Background colour
v8::Local<v8::Object> background = AttrAs<v8::Object>(options, "background");
for (unsigned int i = 0; i < 4; i++) {
baton->background[i] = AttrTo<uint32_t>(background, i);
}
// Overlay options
if (HasAttr(options, "overlay")) {
baton->overlay = CreateInputDescriptor(AttrAs<v8::Object>(options, "overlay"), buffersToPersist);
baton->overlayGravity = AttrTo<int32_t>(options, "overlayGravity");
baton->overlayXOffset = AttrTo<int32_t>(options, "overlayXOffset");
baton->overlayYOffset = AttrTo<int32_t>(options, "overlayYOffset");
baton->overlayTile = AttrTo<bool>(options, "overlayTile");
baton->overlayCutout = AttrTo<bool>(options, "overlayCutout");
}
// Resize options
baton->withoutEnlargement = AttrTo<bool>(options, "withoutEnlargement");
baton->crop = AttrTo<int32_t>(options, "crop");
baton->kernel = AttrAsStr(options, "kernel");
baton->interpolator = AttrAsStr(options, "interpolator");
baton->centreSampling = AttrTo<bool>(options, "centreSampling");
// Join Channel Options
if(HasAttr(options, "joinChannelIn")) {
v8::Local<v8::Object> joinChannelObject = Nan::Get(options, Nan::New("joinChannelIn").ToLocalChecked())
.ToLocalChecked().As<v8::Object>();
v8::Local<v8::Array> joinChannelArray = joinChannelObject.As<v8::Array>();
int joinChannelArrayLength = AttrTo<int32_t>(joinChannelObject, "length");
for(int i = 0; i < joinChannelArrayLength; i++) {
baton->joinChannelIn.push_back(
CreateInputDescriptor(
Nan::Get(joinChannelArray, i).ToLocalChecked().As<v8::Object>(),
buffersToPersist));
}
}
// Operators
baton->flatten = AttrTo<bool>(options, "flatten");
baton->negate = AttrTo<bool>(options, "negate");
baton->blurSigma = AttrTo<double>(options, "blurSigma");
baton->sharpenSigma = AttrTo<double>(options, "sharpenSigma");
baton->sharpenFlat = AttrTo<double>(options, "sharpenFlat");
baton->sharpenJagged = AttrTo<double>(options, "sharpenJagged");
baton->threshold = AttrTo<int32_t>(options, "threshold");
baton->thresholdGrayscale = AttrTo<bool>(options, "thresholdGrayscale");
baton->trimTolerance = AttrTo<int32_t>(options, "trimTolerance");
if(baton->accessMethod == VIPS_ACCESS_SEQUENTIAL && baton->trimTolerance != 0) {
baton->accessMethod = VIPS_ACCESS_RANDOM;
}
baton->gamma = AttrTo<double>(options, "gamma");
baton->greyscale = AttrTo<bool>(options, "greyscale");
baton->normalise = AttrTo<bool>(options, "normalise");
baton->angle = AttrTo<int32_t>(options, "angle");
baton->rotateBeforePreExtract = AttrTo<bool>(options, "rotateBeforePreExtract");
baton->flip = AttrTo<bool>(options, "flip");
baton->flop = AttrTo<bool>(options, "flop");
baton->extendTop = AttrTo<int32_t>(options, "extendTop");
baton->extendBottom = AttrTo<int32_t>(options, "extendBottom");
baton->extendLeft = AttrTo<int32_t>(options, "extendLeft");
baton->extendRight = AttrTo<int32_t>(options, "extendRight");
baton->extractChannel = AttrTo<int32_t>(options, "extractChannel");
if (HasAttr(options, "boolean")) {
baton->boolean = CreateInputDescriptor(AttrAs<v8::Object>(options, "boolean"), buffersToPersist);
baton->booleanOp = sharp::GetBooleanOperation(AttrAsStr(options, "booleanOp"));
}
if (HasAttr(options, "bandBoolOp")) {
baton->bandBoolOp = sharp::GetBooleanOperation(AttrAsStr(options, "bandBoolOp"));
}
if (HasAttr(options, "convKernel")) {
v8::Local<v8::Object> kernel = AttrAs<v8::Object>(options, "convKernel");
baton->convKernelWidth = AttrTo<uint32_t>(kernel, "width");
baton->convKernelHeight = AttrTo<uint32_t>(kernel, "height");
baton->convKernelScale = AttrTo<double>(kernel, "scale");
baton->convKernelOffset = AttrTo<double>(kernel, "offset");
size_t const kernelSize = static_cast<size_t>(baton->convKernelWidth * baton->convKernelHeight);
baton->convKernel = std::unique_ptr<double[]>(new double[kernelSize]);
v8::Local<v8::Array> kdata = AttrAs<v8::Array>(kernel, "kernel");
for (unsigned int i = 0; i < kernelSize; i++) {
baton->convKernel[i] = AttrTo<double>(kdata, i);
}
}
baton->colourspace = sharp::GetInterpretation(AttrAsStr(options, "colourspace"));
if (baton->colourspace == VIPS_INTERPRETATION_ERROR) {
baton->colourspace = VIPS_INTERPRETATION_sRGB;
}
// Output
baton->formatOut = AttrAsStr(options, "formatOut");
baton->fileOut = AttrAsStr(options, "fileOut");
baton->withMetadata = AttrTo<bool>(options, "withMetadata");
baton->withMetadataOrientation = AttrTo<uint32_t>(options, "withMetadataOrientation");
// Format-specific
baton->jpegQuality = AttrTo<uint32_t>(options, "jpegQuality");
baton->jpegProgressive = AttrTo<bool>(options, "jpegProgressive");
baton->jpegChromaSubsampling = AttrAsStr(options, "jpegChromaSubsampling");
baton->jpegTrellisQuantisation = AttrTo<bool>(options, "jpegTrellisQuantisation");
baton->jpegOvershootDeringing = AttrTo<bool>(options, "jpegOvershootDeringing");
baton->jpegOptimiseScans = AttrTo<bool>(options, "jpegOptimiseScans");
baton->pngProgressive = AttrTo<bool>(options, "pngProgressive");
baton->pngCompressionLevel = AttrTo<uint32_t>(options, "pngCompressionLevel");
baton->pngAdaptiveFiltering = AttrTo<bool>(options, "pngAdaptiveFiltering");
baton->webpQuality = AttrTo<uint32_t>(options, "webpQuality");
baton->tiffQuality = AttrTo<uint32_t>(options, "tiffQuality");
// Tile output
baton->tileSize = AttrTo<uint32_t>(options, "tileSize");
baton->tileOverlap = AttrTo<uint32_t>(options, "tileOverlap");
std::string tileContainer = AttrAsStr(options, "tileContainer");
if (tileContainer == "zip") {
baton->tileContainer = VIPS_FOREIGN_DZ_CONTAINER_ZIP;
} else {
baton->tileContainer = VIPS_FOREIGN_DZ_CONTAINER_FS;
}
std::string tileLayout = AttrAsStr(options, "tileLayout");
if (tileLayout == "google") {
baton->tileLayout = VIPS_FOREIGN_DZ_LAYOUT_GOOGLE;
} else if (tileLayout == "zoomify") {
baton->tileLayout = VIPS_FOREIGN_DZ_LAYOUT_ZOOMIFY;
} else {
baton->tileLayout = VIPS_FOREIGN_DZ_LAYOUT_DZ;
}
baton->tileFormat = AttrAsStr(options, "tileFormat");
// Function to notify of queue length changes
Nan::Callback *queueListener = new Nan::Callback(AttrAs<v8::Function>(options, "queueListener"));
// Join queue for worker thread
Nan::Callback *callback = new Nan::Callback(info[1].As<v8::Function>());
Nan::AsyncQueueWorker(new PipelineWorker(callback, baton, queueListener, buffersToPersist));
// Increment queued task counter
g_atomic_int_inc(&sharp::counterQueue);
v8::Local<v8::Value> queueLength[1] = { Nan::New<v8::Uint32>(sharp::counterQueue) };
queueListener->Call(1, queueLength);
}