sharp/src/operations.cc
Lovell Fuller 2ec845b083 Create normalize/blur/sharpen operations
Reduces pipeline by ~100 LOC
2015-07-11 21:44:39 +01:00

334 lines
11 KiB
C++
Executable File

#include <vips/vips.h>
#include "common.h"
#include "operations.h"
namespace sharp {
/*
Alpha composite src over dst
Assumes alpha channels are already premultiplied and will be unpremultiplied after
*/
int Composite(VipsObject *context, VipsImage *src, VipsImage *dst, VipsImage **out) {
using sharp::HasAlpha;
// Split src into non-alpha and alpha
VipsImage *srcWithoutAlpha;
if (vips_extract_band(src, &srcWithoutAlpha, 0, "n", src->Bands - 1, NULL))
return -1;
vips_object_local(context, srcWithoutAlpha);
VipsImage *srcAlpha;
if (vips_extract_band(src, &srcAlpha, src->Bands - 1, "n", 1, NULL))
return -1;
vips_object_local(context, srcAlpha);
// Split dst into non-alpha and alpha channels
VipsImage *dstWithoutAlpha;
VipsImage *dstAlpha;
if (HasAlpha(dst)) {
// Non-alpha: extract all-but-last channel
if (vips_extract_band(dst, &dstWithoutAlpha, 0, "n", dst->Bands - 1, NULL)) {
return -1;
}
vips_object_local(context, dstWithoutAlpha);
// Alpha: Extract last channel
if (vips_extract_band(dst, &dstAlpha, dst->Bands - 1, "n", 1, NULL)) {
return -1;
}
vips_object_local(context, dstAlpha);
} else {
// Non-alpha: Copy reference
dstWithoutAlpha = dst;
// Alpha: Use blank, opaque (0xFF) image
VipsImage *black;
if (vips_black(&black, dst->Xsize, dst->Ysize, NULL)) {
return -1;
}
vips_object_local(context, black);
if (vips_invert(black, &dstAlpha, NULL)) {
return -1;
}
vips_object_local(context, dstAlpha);
}
// Compute normalized input alpha channels:
VipsImage *srcAlphaNormalized;
if (vips_linear1(srcAlpha, &srcAlphaNormalized, 1.0 / 255.0, 0.0, NULL))
return -1;
vips_object_local(context, srcAlphaNormalized);
VipsImage *dstAlphaNormalized;
if (vips_linear1(dstAlpha, &dstAlphaNormalized, 1.0 / 255.0, 0.0, NULL))
return -1;
vips_object_local(context, dstAlphaNormalized);
//
// Compute normalized output alpha channel:
//
// References:
// - http://en.wikipedia.org/wiki/Alpha_compositing#Alpha_blending
// - https://github.com/jcupitt/ruby-vips/issues/28#issuecomment-9014826
//
// out_a = src_a + dst_a * (1 - src_a)
// ^^^^^^^^^^^
// t0
// ^^^^^^^^^^^^^^^^^^^
// t1
VipsImage *t0;
if (vips_linear1(srcAlphaNormalized, &t0, -1.0, 1.0, NULL))
return -1;
vips_object_local(context, t0);
VipsImage *t1;
if (vips_multiply(dstAlphaNormalized, t0, &t1, NULL))
return -1;
vips_object_local(context, t1);
VipsImage *outAlphaNormalized;
if (vips_add(srcAlphaNormalized, t1, &outAlphaNormalized, NULL))
return -1;
vips_object_local(context, outAlphaNormalized);
//
// Compute output RGB channels:
//
// Wikipedia:
// out_rgb = (src_rgb * src_a + dst_rgb * dst_a * (1 - src_a)) / out_a
// ^^^^^^^^^^^
// t0
//
// Omit division by `out_a` since `Compose` is supposed to output a
// premultiplied RGBA image as reversal of premultiplication is handled
// externally.
//
VipsImage *t2;
if (vips_multiply(dstWithoutAlpha, t0, &t2, NULL))
return -1;
vips_object_local(context, t2);
VipsImage *outRGBPremultiplied;
if (vips_add(srcWithoutAlpha, t2, &outRGBPremultiplied, NULL))
return -1;
vips_object_local(context, outRGBPremultiplied);
// Denormalize output alpha channel:
VipsImage *outAlpha;
if (vips_linear1(outAlphaNormalized, &outAlpha, 255.0, 0.0, NULL))
return -1;
vips_object_local(context, outAlpha);
// Combine RGB and alpha channel into output image:
return vips_bandjoin2(outRGBPremultiplied, outAlpha, out, NULL);
}
/*
* Premultiply alpha channel of `image`.
*/
int Premultiply(VipsObject *context, VipsImage *image, VipsImage **out) {
#if (VIPS_MAJOR_VERSION >= 9 || (VIPS_MAJOR_VERSION >= 8 && VIPS_MINOR_VERSION >= 1))
return vips_premultiply(image, out, NULL);
#else
VipsImage *imageRGB;
if (vips_extract_band(image, &imageRGB, 0, "n", image->Bands - 1, NULL))
return -1;
vips_object_local(context, imageRGB);
VipsImage *imageAlpha;
if (vips_extract_band(image, &imageAlpha, image->Bands - 1, "n", 1, NULL))
return -1;
vips_object_local(context, imageAlpha);
VipsImage *imageAlphaNormalized;
if (vips_linear1(imageAlpha, &imageAlphaNormalized, 1.0 / 255.0, 0.0, NULL))
return -1;
vips_object_local(context, imageAlphaNormalized);
VipsImage *imageRGBPremultiplied;
if (vips_multiply(imageRGB, imageAlphaNormalized, &imageRGBPremultiplied, NULL))
return -1;
vips_object_local(context, imageRGBPremultiplied);
return vips_bandjoin2(imageRGBPremultiplied, imageAlpha, out, NULL);
#endif
}
/*
* Unpremultiply alpha channel of `image`.
*/
int Unpremultiply(VipsObject *context, VipsImage *image, VipsImage **out) {
#if (VIPS_MAJOR_VERSION >= 9 || (VIPS_MAJOR_VERSION >= 8 && VIPS_MINOR_VERSION >= 1))
return vips_unpremultiply(image, out, NULL);
#else
VipsImage *imageRGBPremultipliedTransformed;
if (vips_extract_band(image, &imageRGBPremultipliedTransformed, 0, "n", image->Bands - 1, NULL))
return -1;
vips_object_local(context, imageRGBPremultipliedTransformed);
VipsImage *imageAlphaTransformed;
if (vips_extract_band(image, &imageAlphaTransformed, image->Bands - 1, "n", 1, NULL))
return -1;
vips_object_local(context, imageAlphaTransformed);
VipsImage *imageAlphaNormalizedTransformed;
if (vips_linear1(imageAlphaTransformed, &imageAlphaNormalizedTransformed, 1.0 / 255.0, 0.0, NULL))
return -1;
vips_object_local(context, imageAlphaNormalizedTransformed);
VipsImage *imageRGBUnpremultipliedTransformed;
if (vips_divide(imageRGBPremultipliedTransformed, imageAlphaNormalizedTransformed, &imageRGBUnpremultipliedTransformed, NULL))
return -1;
vips_object_local(context, imageRGBUnpremultipliedTransformed);
return vips_bandjoin2(imageRGBUnpremultipliedTransformed, imageAlphaTransformed, out, NULL);
#endif
}
/*
* Stretch luminance to cover full dynamic range.
*/
int Normalize(VipsObject *context, VipsImage *image, VipsImage **out) {
#ifndef _WIN32
// Get original colourspace
VipsInterpretation typeBeforeNormalize = image->Type;
if (typeBeforeNormalize == VIPS_INTERPRETATION_RGB) {
typeBeforeNormalize = VIPS_INTERPRETATION_sRGB;
}
// Convert to LAB colourspace
VipsImage *lab;
if (vips_colourspace(image, &lab, VIPS_INTERPRETATION_LAB, NULL)) {
return -1;
}
vips_object_local(context, lab);
// Extract luminance
VipsImage *luminance;
if (vips_extract_band(lab, &luminance, 0, "n", 1, NULL)) {
return -1;
}
vips_object_local(context, luminance);
// Extract chroma
VipsImage *chroma;
if (vips_extract_band(lab, &chroma, 1, "n", 2, NULL)) {
return -1;
}
vips_object_local(context, chroma);
// Find luminance range
VipsImage *stats;
if (vips_stats(luminance, &stats, NULL)) {
return -1;
}
vips_object_local(context, stats);
double min = *VIPS_MATRIX(stats, 0, 0);
double max = *VIPS_MATRIX(stats, 1, 0);
if (min != max) {
double f = 100.0 / (max - min);
double a = -(min * f);
// Scale luminance
VipsImage *luminance100;
if (vips_linear1(luminance, &luminance100, f, a, NULL)) {
return -1;
}
vips_object_local(context, luminance100);
// Join scaled luminance to chroma
VipsImage *normalizedLab;
if (vips_bandjoin2(luminance100, chroma, &normalizedLab, NULL)) {
return -1;
}
vips_object_local(context, normalizedLab);
// Convert to original colourspace
VipsImage *normalized;
if (vips_colourspace(normalizedLab, &normalized, typeBeforeNormalize, NULL)) {
return -1;
}
vips_object_local(context, normalized);
// Attach original alpha channel, if any
if (HasAlpha(image)) {
// Extract original alpha channel
VipsImage *alpha;
if (vips_extract_band(image, &alpha, image->Bands - 1, "n", 1, NULL)) {
return -1;
}
vips_object_local(context, alpha);
// Join alpha channel to normalised image
VipsImage *normalizedAlpha;
if (vips_bandjoin2(normalized, alpha, &normalizedAlpha, NULL)) {
return -1;
}
vips_object_local(context, normalizedAlpha);
*out = normalizedAlpha;
} else {
*out = normalized;
}
} else {
// Cannot normalise zero-range image
*out = image;
}
#else
// The normalize operation is currently unsupported on Windows
// See https://github.com/lovell/sharp/issues/152
*out = image;
#endif
return 0;
}
/*
* Gaussian blur (use sigma <0 for fast blur)
*/
int Blur(VipsObject *context, VipsImage *image, VipsImage **out, double sigma) {
VipsImage *blurred;
if (sigma < 0.0) {
// Fast, mild blur - averages neighbouring pixels
VipsImage *blur = vips_image_new_matrixv(3, 3,
1.0, 1.0, 1.0,
1.0, 1.0, 1.0,
1.0, 1.0, 1.0);
vips_image_set_double(blur, "scale", 9);
vips_object_local(context, blur);
if (vips_conv(image, &blurred, blur, NULL)) {
return -1;
}
} else {
// Slower, accurate Gaussian blur
// Create Gaussian function for standard deviation
VipsImage *gaussian;
if (vips_gaussmat(&gaussian, sigma, 0.2, "separable", TRUE, "integer", TRUE, NULL)) {
return -1;
}
vips_object_local(context, gaussian);
// Apply Gaussian function
if (vips_convsep(image, &blurred, gaussian, "precision", VIPS_PRECISION_INTEGER, NULL)) {
return -1;
}
}
vips_object_local(context, blurred);
*out = blurred;
return 0;
}
/*
* Sharpen flat and jagged areas. Use radius of -1 for fast sharpen.
*/
int Sharpen(VipsObject *context, VipsImage *image, VipsImage **out, int radius, double flat, double jagged) {
VipsImage *sharpened;
if (radius == -1) {
// Fast, mild sharpen
VipsImage *sharpen = vips_image_new_matrixv(3, 3,
-1.0, -1.0, -1.0,
-1.0, 32.0, -1.0,
-1.0, -1.0, -1.0);
vips_image_set_double(sharpen, "scale", 24);
vips_object_local(context, sharpen);
if (vips_conv(image, &sharpened, sharpen, NULL)) {
return -1;
}
} else {
// Slow, accurate sharpen in LAB colour space, with control over flat vs jagged areas
if (vips_sharpen(image, &sharpened, "radius", radius, "m1", flat, "m2", jagged, NULL)) {
return -1;
}
}
vips_object_local(context, sharpened);
*out = sharpened;
return 0;
}
} // namespace sharp