sharp/test/unit/noise.js
Lovell Fuller 4f9f8179a6
Linter: apply all recommended biome settings
Enforces previously-skipped useArrowFunction check
2025-11-04 09:41:45 +00:00

309 lines
7.9 KiB
JavaScript

/*!
Copyright 2013 Lovell Fuller and others.
SPDX-License-Identifier: Apache-2.0
*/
const { describe, it } = require('node:test');
const assert = require('node:assert');
const sharp = require('../../');
const fixtures = require('../fixtures');
describe('Gaussian noise', () => {
it('generate single-channel gaussian noise', (_t, done) => {
const output = fixtures.path('output.noise-1-channel.png');
const noise = sharp({
create: {
width: 1024,
height: 768,
channels: 1, // b-w
noise: {
type: 'gaussian',
mean: 128,
sigma: 30
}
}
}).toColourspace('b-w');
noise.toFile(output, (err, info) => {
if (err) throw err;
assert.strictEqual('png', info.format);
assert.strictEqual(1024, info.width);
assert.strictEqual(768, info.height);
assert.strictEqual(1, info.channels);
sharp(output).metadata((err, metadata) => {
if (err) throw err;
assert.strictEqual('b-w', metadata.space);
assert.strictEqual('uchar', metadata.depth);
done();
});
});
});
it('generate 3-channels gaussian noise', (_t, done) => {
const output = fixtures.path('output.noise-3-channels.png');
const noise = sharp({
create: {
width: 1024,
height: 768,
channels: 3, // sRGB
noise: {
type: 'gaussian',
mean: 128,
sigma: 30
}
}
});
noise.toFile(output, (err, info) => {
if (err) throw err;
assert.strictEqual('png', info.format);
assert.strictEqual(1024, info.width);
assert.strictEqual(768, info.height);
assert.strictEqual(3, info.channels);
sharp(output).metadata((err, metadata) => {
if (err) throw err;
assert.strictEqual('srgb', metadata.space);
assert.strictEqual('uchar', metadata.depth);
done();
});
});
});
it('overlay 3-channels gaussian noise over image', (_t, done) => {
const output = fixtures.path('output.noise-image.jpg');
const noise = sharp({
create: {
width: 320,
height: 240,
channels: 3,
noise: {
type: 'gaussian',
mean: 0,
sigma: 5
}
}
});
noise.toBuffer((err, data, info) => {
if (err) throw err;
assert.strictEqual(3, info.channels);
sharp(fixtures.inputJpg)
.resize(320, 240)
.composite([
{
input: data,
blend: 'exclusion',
raw: {
width: info.width,
height: info.height,
channels: info.channels
}
}
])
.toFile(output, (err, info) => {
if (err) throw err;
assert.strictEqual('jpeg', info.format);
assert.strictEqual(320, info.width);
assert.strictEqual(240, info.height);
assert.strictEqual(3, info.channels);
// perceptual hashing detects that images are the same (difference is <=1%)
fixtures.assertSimilar(output, fixtures.inputJpg, (err) => {
if (err) throw err;
done();
});
});
});
});
it('overlay strong single-channel (sRGB) gaussian noise with 25% transparency over transparent png image', (_t, done) => {
const output = fixtures.path('output.noise-image-transparent.png');
const width = 320;
const height = 240;
const rawData = {
width,
height,
channels: 1
};
const noise = sharp({
create: {
width,
height,
channels: 1,
noise: {
type: 'gaussian',
mean: 200,
sigma: 30
}
}
});
noise
.toColourspace('b-w')
.toBuffer((err, data, info) => {
if (err) throw err;
assert.strictEqual(1, info.channels);
sharp(data, { raw: rawData })
.joinChannel(data, { raw: rawData }) // r channel
.joinChannel(data, { raw: rawData }) // b channel
.joinChannel(Buffer.alloc(width * height, 64), { raw: rawData }) // alpha channel
.toBuffer((err, data, info) => {
if (err) throw err;
assert.strictEqual(4, info.channels);
sharp(fixtures.inputPngRGBWithAlpha)
.resize(width, height)
.composite([
{
input: data,
blend: 'exclusion',
raw: {
width: info.width,
height: info.height,
channels: info.channels
}
}
])
.toFile(output, (err, info) => {
if (err) throw err;
assert.strictEqual('png', info.format);
assert.strictEqual(width, info.width);
assert.strictEqual(height, info.height);
assert.strictEqual(4, info.channels);
fixtures.assertSimilar(output, fixtures.inputPngRGBWithAlpha, { threshold: 10 }, (err) => {
if (err) throw err;
done();
});
});
});
});
});
it('animated noise', async () => {
const gif = await sharp({
create: {
width: 16,
height: 64,
pageHeight: 16,
channels: 3,
noise: { type: 'gaussian' }
}
})
.gif()
.toBuffer();
const { width, height, pages, delay } = await sharp(gif).metadata();
assert.strictEqual(width, 16);
assert.strictEqual(height, 16);
assert.strictEqual(pages, 4);
assert.strictEqual(delay.length, 4);
});
it('no create object properties specified', () => {
assert.throws(() => {
sharp({
create: {}
});
});
});
it('invalid noise object', () => {
assert.throws(() => {
sharp({
create: {
width: 100,
height: 100,
channels: 3,
noise: 'gaussian'
}
});
});
});
it('unknown type of noise', () => {
assert.throws(() => {
sharp({
create: {
width: 100,
height: 100,
channels: 3,
noise: {
type: 'unknown'
}
}
});
});
});
it('gaussian noise, invalid amount of channels', () => {
assert.throws(() => {
sharp({
create: {
width: 100,
height: 100,
channels: 5,
noise: {
type: 'gaussian',
mean: 5,
sigma: 10
}
}
});
});
});
it('gaussian noise, invalid mean', () => {
assert.throws(() => {
sharp({
create: {
width: 100,
height: 100,
channels: 1,
noise: {
type: 'gaussian',
mean: -1.5,
sigma: 10
}
}
});
});
});
it('gaussian noise, invalid sigma', () => {
assert.throws(() => {
sharp({
create: {
width: 100,
height: 100,
channels: 1,
noise: {
type: 'gaussian',
mean: 0,
sigma: -1.5
}
}
});
});
});
it('Invalid pageHeight', () => {
const create = {
width: 8,
height: 8,
channels: 4,
noise: { type: 'gaussian' }
};
assert.throws(
() => sharp({ create: { ...create, pageHeight: 'zoinks' } }),
/Expected positive integer for create\.pageHeight but received zoinks of type string/
);
assert.throws(
() => sharp({ create: { ...create, pageHeight: -1 } }),
/Expected positive integer for create\.pageHeight but received -1 of type number/
);
assert.throws(
() => sharp({ create: { ...create, pageHeight: 9 } }),
/Expected positive integer for create\.pageHeight but received 9 of type number/
);
assert.throws(
() => sharp({ create: { ...create, pageHeight: 3 } }),
/Expected create\.height 8 to be a multiple of create\.pageHeight 3/
);
});
});