sharp/src/sharp.cc
2014-08-22 14:17:43 +01:00

778 lines
25 KiB
C++
Executable File

#include <node.h>
#include <node_buffer.h>
#include <math.h>
#include <string>
#include <string.h>
#include <tuple>
#include <vips/vips.h>
#include "nan.h"
using namespace v8;
using namespace node;
struct resize_baton {
std::string file_in;
void* buffer_in;
size_t buffer_in_len;
std::string output;
void* buffer_out;
size_t buffer_out_len;
int width;
int height;
bool crop;
int gravity;
bool max;
VipsExtend extend;
bool sharpen;
std::string interpolator;
bool progressive;
bool without_enlargement;
VipsAccess access_method;
int quality;
int compressionLevel;
int angle;
std::string err;
resize_baton():
buffer_in_len(0),
buffer_out_len(0),
crop(false),
gravity(0),
max(false),
sharpen(false),
progressive(false),
without_enlargement(false) {}
};
typedef enum {
UNKNOWN,
JPEG,
PNG,
WEBP,
TIFF,
MAGICK
} ImageType;
unsigned char const MARKER_JPEG[] = {0xff, 0xd8};
unsigned char const MARKER_PNG[] = {0x89, 0x50};
unsigned char const MARKER_WEBP[] = {0x52, 0x49};
// How many tasks are in the queue?
volatile int counter_queue = 0;
// How many tasks are being processed?
volatile int counter_process = 0;
static bool ends_with(std::string const &str, std::string const &end) {
return str.length() >= end.length() && 0 == str.compare(str.length() - end.length(), end.length(), end);
}
static bool is_jpeg(std::string const &str) {
return ends_with(str, ".jpg") || ends_with(str, ".jpeg") || ends_with(str, ".JPG") || ends_with(str, ".JPEG");
}
static bool is_png(std::string const &str) {
return ends_with(str, ".png") || ends_with(str, ".PNG");
}
static bool is_webp(std::string const &str) {
return ends_with(str, ".webp") || ends_with(str, ".WEBP");
}
static bool is_tiff(std::string const &str) {
return ends_with(str, ".tif") || ends_with(str, ".tiff") || ends_with(str, ".TIF") || ends_with(str, ".TIFF");
}
static void resize_error(resize_baton *baton, VipsImage *unref) {
(baton->err).append(vips_error_buffer());
vips_error_clear();
g_object_unref(unref);
vips_thread_shutdown();
return;
}
/*
Calculate the angle of rotation for the output image.
In order of priority:
1. Use explicitly requested angle (supports 90, 180, 270)
2. Use input image EXIF Orientation header (does not support mirroring)
3. Otherwise default to zero, i.e. no rotation
*/
static VipsAngle
sharp_calc_rotation(int const angle, VipsImage const *input) {
VipsAngle rotate = VIPS_ANGLE_0;
if (angle == -1) {
const char *exif;
if (!vips_image_get_string(input, "exif-ifd0-Orientation", &exif)) {
if (exif[0] == 0x36) { // "6"
rotate = VIPS_ANGLE_90;
} else if (exif[0] == 0x33) { // "3"
rotate = VIPS_ANGLE_180;
} else if (exif[0] == 0x38) { // "8"
rotate = VIPS_ANGLE_270;
}
}
} else {
if (angle == 90) {
rotate = VIPS_ANGLE_90;
} else if (angle == 180) {
rotate = VIPS_ANGLE_180;
} else if (angle == 270) {
rotate = VIPS_ANGLE_270;
}
}
return rotate;
}
/*
Calculate the (left, top) coordinates of the output image
within the input image, applying the given gravity.
*/
static std::tuple<int, int>
sharp_calc_crop(int const inWidth, int const inHeight, int const outWidth, int const outHeight, int const gravity) {
int left = 0;
int top = 0;
switch (gravity) {
case 1: // North
left = (inWidth - outWidth + 1) / 2;
break;
case 2: // East
left = inWidth - outWidth;
top = (inHeight - outHeight + 1) / 2;
break;
case 3: // South
left = (inWidth - outWidth + 1) / 2;
top = inHeight - outHeight;
break;
case 4: // West
top = (inHeight - outHeight + 1) / 2;
break;
default: // Centre
left = (inWidth - outWidth + 1) / 2;
top = (inHeight - outHeight + 1) / 2;
}
return std::make_tuple(left, top);
}
/*
Initialise a VipsImage from a buffer. Supports JPEG, PNG and WebP.
Returns the ImageType detected, if any.
*/
static ImageType
sharp_init_image_from_buffer(VipsImage **image, void *buffer, size_t const length, VipsAccess const access) {
ImageType imageType = UNKNOWN;
if (memcmp(MARKER_JPEG, buffer, 2) == 0) {
if (!vips_jpegload_buffer(buffer, length, image, "access", access, NULL)) {
imageType = JPEG;
}
} else if(memcmp(MARKER_PNG, buffer, 2) == 0) {
if (!vips_pngload_buffer(buffer, length, image, "access", access, NULL)) {
imageType = PNG;
}
} else if(memcmp(MARKER_WEBP, buffer, 2) == 0) {
if (!vips_webpload_buffer(buffer, length, image, "access", access, NULL)) {
imageType = WEBP;
}
}
return imageType;
}
/*
Initialise a VipsImage from a file.
Returns the ImageType detected, if any.
*/
static ImageType
sharp_init_image_from_file(VipsImage **image, char const *file, VipsAccess const access) {
ImageType imageType = UNKNOWN;
if (vips_foreign_is_a("jpegload", file)) {
if (!vips_jpegload(file, image, "access", access, NULL)) {
imageType = JPEG;
}
} else if (vips_foreign_is_a("pngload", file)) {
if (!vips_pngload(file, image, "access", access, NULL)) {
imageType = PNG;
}
} else if (vips_foreign_is_a("webpload", file)) {
if (!vips_webpload(file, image, "access", access, NULL)) {
imageType = WEBP;
}
} else if (vips_foreign_is_a("tiffload", file)) {
if (!vips_tiffload(file, image, "access", access, NULL)) {
imageType = TIFF;
}
} else if(vips_foreign_is_a("magickload", file)) {
if (!vips_magickload(file, image, "access", access, NULL)) {
imageType = MAGICK;
}
}
return imageType;
}
// Metadata
struct metadata_baton {
// Input
std::string file_in;
void* buffer_in;
size_t buffer_in_len;
// Output
std::string format;
int width;
int height;
std::string space;
int channels;
int orientation;
std::string err;
metadata_baton():
buffer_in_len(0),
orientation(0) {}
};
class MetadataWorker : public NanAsyncWorker {
public:
MetadataWorker(NanCallback *callback, metadata_baton *baton) : NanAsyncWorker(callback), baton(baton) {}
~MetadataWorker() {}
void Execute() {
// Decrement queued task counter
g_atomic_int_dec_and_test(&counter_queue);
ImageType imageType = UNKNOWN;
VipsImage *image = vips_image_new();
if (baton->buffer_in_len > 1) {
// From buffer
imageType = sharp_init_image_from_buffer(&image, baton->buffer_in, baton->buffer_in_len, VIPS_ACCESS_RANDOM);
if (imageType == UNKNOWN) {
(baton->err).append("Input buffer contains unsupported image format");
}
} else {
// From file
imageType = sharp_init_image_from_file(&image, baton->file_in.c_str(), VIPS_ACCESS_RANDOM);
if (imageType == UNKNOWN) {
(baton->err).append("File is of an unsupported image format");
}
}
if (imageType != UNKNOWN) {
// Image type
switch (imageType) {
case JPEG: baton->format = "jpeg"; break;
case PNG: baton->format = "png"; break;
case WEBP: baton->format = "webp"; break;
case TIFF: baton->format = "tiff"; break;
case MAGICK: baton->format = "magick"; break;
case UNKNOWN: default: baton->format = "";
}
// VipsImage attributes
baton->width = image->Xsize;
baton->height = image->Ysize;
baton->space = vips_enum_nick(VIPS_TYPE_INTERPRETATION, image->Type);
baton->channels = image->Bands;
// EXIF Orientation
const char *exif;
if (!vips_image_get_string(image, "exif-ifd0-Orientation", &exif)) {
baton->orientation = atoi(&exif[0]);
}
}
// Clean up
g_object_unref(image);
vips_error_clear();
vips_thread_shutdown();
}
void HandleOKCallback () {
NanScope();
Handle<Value> argv[2] = { NanNull(), NanNull() };
if (!baton->err.empty()) {
// Error
argv[0] = NanNew<String>(baton->err.data(), baton->err.size());
} else {
// Metadata Object
Local<Object> info = NanNew<Object>();
info->Set(NanNew<String>("format"), NanNew<String>(baton->format));
info->Set(NanNew<String>("width"), NanNew<Number>(baton->width));
info->Set(NanNew<String>("height"), NanNew<Number>(baton->height));
info->Set(NanNew<String>("space"), NanNew<String>(baton->space));
info->Set(NanNew<String>("channels"), NanNew<Number>(baton->channels));
if (baton->orientation > 0) {
info->Set(NanNew<String>("orientation"), NanNew<Number>(baton->orientation));
}
argv[1] = info;
}
delete baton;
// Return to JavaScript
callback->Call(2, argv);
}
private:
metadata_baton* baton;
};
/*
metadata(options, callback)
*/
NAN_METHOD(metadata) {
NanScope();
// V8 objects are converted to non-V8 types held in the baton struct
metadata_baton *baton = new metadata_baton;
Local<Object> options = args[0]->ToObject();
// Input filename
baton->file_in = *String::Utf8Value(options->Get(NanNew<String>("fileIn"))->ToString());
// Input Buffer object
if (options->Get(NanNew<String>("bufferIn"))->IsObject()) {
Local<Object> buffer = options->Get(NanNew<String>("bufferIn"))->ToObject();
baton->buffer_in_len = Buffer::Length(buffer);
baton->buffer_in = Buffer::Data(buffer);
}
// Join queue for worker thread
NanCallback *callback = new NanCallback(args[1].As<v8::Function>());
NanAsyncQueueWorker(new MetadataWorker(callback, baton));
// Increment queued task counter
g_atomic_int_inc(&counter_queue);
NanReturnUndefined();
}
// Resize
class ResizeWorker : public NanAsyncWorker {
public:
ResizeWorker(NanCallback *callback, resize_baton *baton) : NanAsyncWorker(callback), baton(baton) {}
~ResizeWorker() {}
void Execute() {
// Decrement queued task counter
g_atomic_int_dec_and_test(&counter_queue);
// Increment processing task counter
g_atomic_int_inc(&counter_process);
// Input
ImageType inputImageType = UNKNOWN;
VipsImage *in = vips_image_new();
if (baton->buffer_in_len > 1) {
// From buffer
inputImageType = sharp_init_image_from_buffer(&in, baton->buffer_in, baton->buffer_in_len, baton->access_method);
if (inputImageType == UNKNOWN) {
(baton->err).append("Input buffer contains unsupported image format");
}
} else {
// From file
inputImageType = sharp_init_image_from_file(&in, baton->file_in.c_str(), baton->access_method);
if (inputImageType == UNKNOWN) {
(baton->err).append("File is of an unsupported image format");
}
}
if (inputImageType == UNKNOWN) {
return resize_error(baton, in);
}
// Get input image width and height
int inputWidth = in->Xsize;
int inputHeight = in->Ysize;
// Calculate angle of rotation, to be carried out later
VipsAngle rotation = sharp_calc_rotation(baton->angle, in);
if (rotation == VIPS_ANGLE_90 || rotation == VIPS_ANGLE_270) {
// Swap input output width and height when rotating by 90 or 270 degrees
int swap = inputWidth;
inputWidth = inputHeight;
inputHeight = swap;
}
// Scaling calculations
double factor;
if (baton->width > 0 && baton->height > 0) {
// Fixed width and height
double xfactor = static_cast<double>(inputWidth) / static_cast<double>(baton->width);
double yfactor = static_cast<double>(inputHeight) / static_cast<double>(baton->height);
factor = baton->crop ? std::min(xfactor, yfactor) : std::max(xfactor, yfactor);
// if max is set, we need to compute the real size of the thumb image
if (baton->max) {
if (xfactor > yfactor) {
baton->height = round(static_cast<double>(inputHeight) / xfactor);
} else {
baton->width = round(static_cast<double>(inputWidth) / yfactor);
}
}
} else if (baton->width > 0) {
// Fixed width, auto height
factor = static_cast<double>(inputWidth) / static_cast<double>(baton->width);
baton->height = floor(static_cast<double>(inputHeight) / factor);
} else if (baton->height > 0) {
// Fixed height, auto width
factor = static_cast<double>(inputHeight) / static_cast<double>(baton->height);
baton->width = floor(static_cast<double>(inputWidth) / factor);
} else {
// Identity transform
factor = 1;
baton->width = inputWidth;
baton->height = inputHeight;
}
int shrink = floor(factor);
if (shrink < 1) {
shrink = 1;
}
double residual = static_cast<double>(shrink) / factor;
// Do not enlarge the output if the input width *or* height are already less than the required dimensions
if (baton->without_enlargement) {
if (inputWidth < baton->width || inputHeight < baton->height) {
factor = 1;
shrink = 1;
residual = 0;
baton->width = inputWidth;
baton->height = inputHeight;
}
}
// Try to use libjpeg shrink-on-load
int shrink_on_load = 1;
if (inputImageType == JPEG) {
if (shrink >= 8) {
factor = factor / 8;
shrink_on_load = 8;
} else if (shrink >= 4) {
factor = factor / 4;
shrink_on_load = 4;
} else if (shrink >= 2) {
factor = factor / 2;
shrink_on_load = 2;
}
}
VipsImage *shrunk_on_load = vips_image_new();
if (shrink_on_load > 1) {
// Recalculate integral shrink and double residual
factor = std::max(factor, 1.0);
shrink = floor(factor);
residual = static_cast<double>(shrink) / factor;
// Reload input using shrink-on-load
if (baton->buffer_in_len > 1) {
if (vips_jpegload_buffer(baton->buffer_in, baton->buffer_in_len, &shrunk_on_load, "shrink", shrink_on_load, NULL)) {
return resize_error(baton, in);
}
} else {
if (vips_jpegload((baton->file_in).c_str(), &shrunk_on_load, "shrink", shrink_on_load, NULL)) {
return resize_error(baton, in);
}
}
} else {
vips_copy(in, &shrunk_on_load, NULL);
}
g_object_unref(in);
VipsImage *shrunk = vips_image_new();
if (shrink > 1) {
// Use vips_shrink with the integral reduction
if (vips_shrink(shrunk_on_load, &shrunk, shrink, shrink, NULL)) {
return resize_error(baton, shrunk_on_load);
}
// Recalculate residual float based on dimensions of required vs shrunk images
double shrunkWidth = shrunk->Xsize;
double shrunkHeight = shrunk->Ysize;
if (rotation == VIPS_ANGLE_90 || rotation == VIPS_ANGLE_270) {
// Swap input output width and height when rotating by 90 or 270 degrees
int swap = shrunkWidth;
shrunkWidth = shrunkHeight;
shrunkHeight = swap;
}
double residualx = static_cast<double>(baton->width) / static_cast<double>(shrunkWidth);
double residualy = static_cast<double>(baton->height) / static_cast<double>(shrunkHeight);
if (baton->crop || baton->max) {
residual = std::max(residualx, residualy);
} else {
residual = std::min(residualx, residualy);
}
} else {
vips_copy(shrunk_on_load, &shrunk, NULL);
}
g_object_unref(shrunk_on_load);
// Use vips_affine with the remaining float part
VipsImage *affined = vips_image_new();
if (residual != 0) {
// Create interpolator - "bilinear" (default), "bicubic" or "nohalo"
VipsInterpolate *interpolator = vips_interpolate_new(baton->interpolator.c_str());
// Perform affine transformation
if (vips_affine(shrunk, &affined, residual, 0, 0, residual, "interpolate", interpolator, NULL)) {
g_object_unref(interpolator);
return resize_error(baton, shrunk);
}
g_object_unref(interpolator);
} else {
vips_copy(shrunk, &affined, NULL);
}
g_object_unref(shrunk);
// Rotate
VipsImage *rotated = vips_image_new();
if (rotation != VIPS_ANGLE_0) {
if (vips_rot(affined, &rotated, rotation, NULL)) {
return resize_error(baton, affined);
}
} else {
vips_copy(affined, &rotated, NULL);
}
g_object_unref(affined);
// Crop/embed
VipsImage *canvased = vips_image_new();
if (rotated->Xsize != baton->width || rotated->Ysize != baton->height) {
if (baton->crop || baton->max) {
// Crop/max
int left;
int top;
std::tie(left, top) = sharp_calc_crop(rotated->Xsize, rotated->Ysize, baton->width, baton->height, baton->gravity);
int width = std::min(rotated->Xsize, baton->width);
int height = std::min(rotated->Ysize, baton->height);
if (vips_extract_area(rotated, &canvased, left, top, width, height, NULL)) {
return resize_error(baton, rotated);
}
} else {
// Embed
int left = (baton->width - rotated->Xsize) / 2;
int top = (baton->height - rotated->Ysize) / 2;
if (vips_embed(rotated, &canvased, left, top, baton->width, baton->height, "extend", baton->extend, NULL)) {
return resize_error(baton, rotated);
}
}
} else {
vips_copy(rotated, &canvased, NULL);
}
g_object_unref(rotated);
// Mild sharpen
VipsImage *sharpened = vips_image_new();
if (baton->sharpen) {
VipsImage *sharpen = vips_image_new_matrixv(3, 3,
-1.0, -1.0, -1.0,
-1.0, 32.0, -1.0,
-1.0, -1.0, -1.0);
vips_image_set_double(sharpen, "scale", 24);
if (vips_conv(canvased, &sharpened, sharpen, NULL)) {
g_object_unref(sharpen);
return resize_error(baton, canvased);
}
g_object_unref(sharpen);
} else {
vips_copy(canvased, &sharpened, NULL);
}
g_object_unref(canvased);
// Always convert to sRGB colour space
VipsImage *colourspaced = vips_image_new();
vips_colourspace(sharpened, &colourspaced, VIPS_INTERPRETATION_sRGB, NULL);
g_object_unref(sharpened);
// Generate image tile cache when interlace output is required
VipsImage *cached = vips_image_new();
if (baton->progressive) {
if (vips_tilecache(colourspaced, &cached, "threaded", TRUE, "persistent", TRUE, "max_tiles", -1, NULL)) {
return resize_error(baton, colourspaced);
}
} else {
vips_copy(colourspaced, &cached, NULL);
}
g_object_unref(colourspaced);
// Output
VipsImage *output = cached;
if (baton->output == "__jpeg" || (baton->output == "__input" && inputImageType == JPEG)) {
// Write JPEG to buffer
if (vips_jpegsave_buffer(output, &baton->buffer_out, &baton->buffer_out_len, "strip", TRUE, "Q", baton->quality, "optimize_coding", TRUE, "interlace", baton->progressive, NULL)) {
return resize_error(baton, output);
}
} else if (baton->output == "__png" || (baton->output == "__input" && inputImageType == PNG)) {
// Write PNG to buffer
if (vips_pngsave_buffer(output, &baton->buffer_out, &baton->buffer_out_len, "strip", TRUE, "compression", baton->compressionLevel, "interlace", baton->progressive, NULL)) {
return resize_error(baton, output);
}
} else if (baton->output == "__webp" || (baton->output == "__input" && inputImageType == WEBP)) {
// Write WEBP to buffer
if (vips_webpsave_buffer(output, &baton->buffer_out, &baton->buffer_out_len, "strip", TRUE, "Q", baton->quality, NULL)) {
return resize_error(baton, output);
}
} else if (is_jpeg(baton->output)) {
// Write JPEG to file
if (vips_jpegsave(output, baton->output.c_str(), "strip", TRUE, "Q", baton->quality, "optimize_coding", TRUE, "interlace", baton->progressive, NULL)) {
return resize_error(baton, output);
}
} else if (is_png(baton->output)) {
// Write PNG to file
if (vips_pngsave(output, baton->output.c_str(), "strip", TRUE, "compression", baton->compressionLevel, "interlace", baton->progressive, NULL)) {
return resize_error(baton, output);
}
} else if (is_webp(baton->output)) {
// Write WEBP to file
if (vips_webpsave(output, baton->output.c_str(), "strip", TRUE, "Q", baton->quality, NULL)) {
return resize_error(baton, output);
}
} else if (is_tiff(baton->output)) {
// Write TIFF to file
if (vips_tiffsave(output, baton->output.c_str(), "strip", TRUE, "compression", VIPS_FOREIGN_TIFF_COMPRESSION_JPEG, "Q", baton->quality, NULL)) {
return resize_error(baton, output);
}
} else {
(baton->err).append("Unsupported output " + baton->output);
}
g_object_unref(output);
// Clean up libvips' per-request data and threads
vips_error_clear();
vips_thread_shutdown();
}
void HandleOKCallback () {
NanScope();
Handle<Value> argv[3] = { NanNull(), NanNull(), NanNull() };
if (!baton->err.empty()) {
// Error
argv[0] = NanNew<String>(baton->err.data(), baton->err.size());
} else {
// Info Object
Local<Object> info = NanNew<Object>();
info->Set(NanNew<String>("width"), NanNew<Number>(baton->width));
info->Set(NanNew<String>("height"), NanNew<Number>(baton->height));
if (baton->buffer_out_len > 0) {
// Buffer
argv[1] = NanNewBufferHandle((char *)baton->buffer_out, baton->buffer_out_len);
g_free(baton->buffer_out);
argv[2] = info;
} else {
// File
argv[1] = info;
}
}
delete baton;
// Decrement processing task counter
g_atomic_int_dec_and_test(&counter_process);
// Return to JavaScript
callback->Call(3, argv);
}
private:
resize_baton* baton;
};
/*
resize(options, output, callback)
*/
NAN_METHOD(resize) {
NanScope();
// V8 objects are converted to non-V8 types held in the baton struct
resize_baton *baton = new resize_baton;
Local<Object> options = args[0]->ToObject();
// Input filename
baton->file_in = *String::Utf8Value(options->Get(NanNew<String>("fileIn"))->ToString());
// Input Buffer object
if (options->Get(NanNew<String>("bufferIn"))->IsObject()) {
Local<Object> buffer = options->Get(NanNew<String>("bufferIn"))->ToObject();
baton->buffer_in_len = Buffer::Length(buffer);
baton->buffer_in = Buffer::Data(buffer);
}
// Output image dimensions
baton->width = options->Get(NanNew<String>("width"))->Int32Value();
baton->height = options->Get(NanNew<String>("height"))->Int32Value();
// Canvas options
Local<String> canvas = options->Get(NanNew<String>("canvas"))->ToString();
if (canvas->Equals(NanNew<String>("c"))) {
baton->crop = true;
} else if (canvas->Equals(NanNew<String>("w"))) {
baton->extend = VIPS_EXTEND_WHITE;
} else if (canvas->Equals(NanNew<String>("b"))) {
baton->extend = VIPS_EXTEND_BLACK;
} else if (canvas->Equals(NanNew<String>("m"))) {
baton->max = true;
}
// Other options
baton->gravity = options->Get(NanNew<String>("gravity"))->Int32Value();
baton->sharpen = options->Get(NanNew<String>("sharpen"))->BooleanValue();
baton->interpolator = *String::Utf8Value(options->Get(NanNew<String>("interpolator"))->ToString());
baton->progressive = options->Get(NanNew<String>("progressive"))->BooleanValue();
baton->without_enlargement = options->Get(NanNew<String>("withoutEnlargement"))->BooleanValue();
baton->access_method = options->Get(NanNew<String>("sequentialRead"))->BooleanValue() ? VIPS_ACCESS_SEQUENTIAL : VIPS_ACCESS_RANDOM;
baton->quality = options->Get(NanNew<String>("quality"))->Int32Value();
baton->compressionLevel = options->Get(NanNew<String>("compressionLevel"))->Int32Value();
baton->angle = options->Get(NanNew<String>("angle"))->Int32Value();
// Output filename or __format for Buffer
baton->output = *String::Utf8Value(options->Get(NanNew<String>("output"))->ToString());
// Join queue for worker thread
NanCallback *callback = new NanCallback(args[1].As<v8::Function>());
NanAsyncQueueWorker(new ResizeWorker(callback, baton));
// Increment queued task counter
g_atomic_int_inc(&counter_queue);
NanReturnUndefined();
}
/*
Get and set cache memory and item limits
*/
NAN_METHOD(cache) {
NanScope();
// Set cache memory limit
if (args[0]->IsInt32()) {
vips_cache_set_max_mem(args[0]->Int32Value() * 1048576);
}
// Set cache items limit
if (args[1]->IsInt32()) {
vips_cache_set_max(args[1]->Int32Value());
}
// Get cache statistics
Local<Object> cache = NanNew<Object>();
cache->Set(NanNew<String>("current"), NanNew<Number>(vips_tracked_get_mem() / 1048576));
cache->Set(NanNew<String>("high"), NanNew<Number>(vips_tracked_get_mem_highwater() / 1048576));
cache->Set(NanNew<String>("memory"), NanNew<Number>(vips_cache_get_max_mem() / 1048576));
cache->Set(NanNew<String>("items"), NanNew<Number>(vips_cache_get_max()));
NanReturnValue(cache);
}
/*
Get internal counters (queued tasks, processing tasks)
*/
NAN_METHOD(counters) {
NanScope();
Local<Object> counters = NanNew<Object>();
counters->Set(NanNew<String>("queue"), NanNew<Number>(counter_queue));
counters->Set(NanNew<String>("process"), NanNew<Number>(counter_process));
NanReturnValue(counters);
}
static void at_exit(void* arg) {
NanScope();
vips_shutdown();
}
extern "C" void init(Handle<Object> target) {
NanScope();
vips_init("");
AtExit(at_exit);
// Set libvips operation cache limits
vips_cache_set_max_mem(100 * 1048576); // 100 MB
vips_cache_set_max(500); // 500 operations
// Methods available to JavaScript
NODE_SET_METHOD(target, "metadata", metadata);
NODE_SET_METHOD(target, "resize", resize);
NODE_SET_METHOD(target, "cache", cache);
NODE_SET_METHOD(target, "counters", counters);
}
NODE_MODULE(sharp, init)