DirectXTex/DirectXTex/DirectXTexTGA.cpp
2025-02-04 12:12:59 -08:00

2571 lines
83 KiB
C++

//-------------------------------------------------------------------------------------
// DirectXTexTGA.cpp
//
// DirectX Texture Library - Targa Truevision (TGA) file format reader/writer
//
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//
// http://go.microsoft.com/fwlink/?LinkId=248926
//-------------------------------------------------------------------------------------
#include "DirectXTexP.h"
//
// The implementation here has the following limitations:
// * Does not support files that contain color maps (these are rare in practice)
// * Interleaved files are not supported (deprecated aspect of TGA format)
// * Only supports 8-bit grayscale; 16-, 24-, and 32-bit truecolor images RLE or uncompressed
// plus 24-bit color-mapped uncompressed images
// * Always writes uncompressed files (i.e. can read RLE compression, but does not write it)
//
using namespace DirectX;
using namespace DirectX::Internal;
namespace
{
constexpr float GAMMA_EPSILON = 0.01f;
const char g_Signature[] = "TRUEVISION-XFILE.";
// This is the official footer signature for the TGA 2.0 file format.
enum TGAImageType
{
TGA_NO_IMAGE = 0,
TGA_COLOR_MAPPED = 1,
TGA_TRUECOLOR = 2,
TGA_BLACK_AND_WHITE = 3,
TGA_COLOR_MAPPED_RLE = 9,
TGA_TRUECOLOR_RLE = 10,
TGA_BLACK_AND_WHITE_RLE = 11,
};
enum TGADescriptorFlags
{
TGA_FLAGS_INVERTX = 0x10,
TGA_FLAGS_INVERTY = 0x20,
TGA_FLAGS_INTERLEAVED_2WAY = 0x40, // Deprecated
TGA_FLAGS_INTERLEAVED_4WAY = 0x80, // Deprecated
};
enum TGAAttributesType : uint8_t
{
TGA_ATTRIBUTE_NONE = 0, // 0: no alpha data included
TGA_ATTRIBUTE_IGNORED = 1, // 1: undefined data, can be ignored
TGA_ATTRIBUTE_UNDEFINED = 2, // 2: uedefined data, should be retained
TGA_ATTRIBUTE_ALPHA = 3, // 3: useful alpha channel data
TGA_ATTRIBUTE_PREMULTIPLIED = 4, // 4: pre-multiplied alpha
};
#pragma pack(push,1)
struct TGA_HEADER
{
uint8_t bIDLength;
uint8_t bColorMapType;
uint8_t bImageType;
uint16_t wColorMapFirst;
uint16_t wColorMapLength;
uint8_t bColorMapSize;
uint16_t wXOrigin;
uint16_t wYOrigin;
uint16_t wWidth;
uint16_t wHeight;
uint8_t bBitsPerPixel;
uint8_t bDescriptor;
};
static_assert(sizeof(TGA_HEADER) == 18, "TGA 2.0 size mismatch");
constexpr size_t TGA_HEADER_LEN = 18;
struct TGA_FOOTER
{
uint32_t dwExtensionOffset;
uint32_t dwDeveloperOffset;
char Signature[18];
};
static_assert(sizeof(TGA_FOOTER) == 26, "TGA 2.0 size mismatch");
struct TGA_EXTENSION
{
uint16_t wSize;
char szAuthorName[41];
char szAuthorComment[324];
uint16_t wStampMonth;
uint16_t wStampDay;
uint16_t wStampYear;
uint16_t wStampHour;
uint16_t wStampMinute;
uint16_t wStampSecond;
char szJobName[41];
uint16_t wJobHour;
uint16_t wJobMinute;
uint16_t wJobSecond;
char szSoftwareId[41];
uint16_t wVersionNumber;
uint8_t bVersionLetter;
uint32_t dwKeyColor;
uint16_t wPixelNumerator;
uint16_t wPixelDenominator;
uint16_t wGammaNumerator;
uint16_t wGammaDenominator;
uint32_t dwColorOffset;
uint32_t dwStampOffset;
uint32_t dwScanOffset;
uint8_t bAttributesType;
};
static_assert(sizeof(TGA_EXTENSION) == 495, "TGA 2.0 size mismatch");
#pragma pack(pop)
enum CONVERSION_FLAGS
{
CONV_FLAGS_NONE = 0x0,
CONV_FLAGS_EXPAND = 0x1, // Conversion requires expanded pixel size
CONV_FLAGS_INVERTX = 0x2, // If set, scanlines are right-to-left
CONV_FLAGS_INVERTY = 0x4, // If set, scanlines are top-to-bottom
CONV_FLAGS_RLE = 0x8, // Source data is RLE compressed
CONV_FLAGS_PALETTED = 0x10, // Source data is paletted
CONV_FLAGS_SWIZZLE = 0x10000, // Swizzle BGR<->RGB data
CONV_FLAGS_888 = 0x20000, // 24bpp format
};
//-------------------------------------------------------------------------------------
// Decodes TGA header
//-------------------------------------------------------------------------------------
HRESULT DecodeTGAHeader(
_In_reads_bytes_(size) const uint8_t* pSource,
size_t size,
TGA_FLAGS flags,
_Out_ TexMetadata& metadata,
size_t& offset,
_Inout_opt_ uint32_t* convFlags) noexcept
{
if (!pSource)
return E_INVALIDARG;
memset(&metadata, 0, sizeof(TexMetadata));
if (size < TGA_HEADER_LEN)
{
return HRESULT_E_INVALID_DATA;
}
auto pHeader = reinterpret_cast<const TGA_HEADER*>(pSource);
if (pHeader->bDescriptor & (TGA_FLAGS_INTERLEAVED_2WAY | TGA_FLAGS_INTERLEAVED_4WAY))
{
return HRESULT_E_NOT_SUPPORTED;
}
if (!pHeader->wWidth || !pHeader->wHeight)
{
// These are uint16 values so are already bounded by UINT16_MAX.
return HRESULT_E_INVALID_DATA;
}
switch (pHeader->bImageType)
{
case TGA_NO_IMAGE:
case TGA_COLOR_MAPPED_RLE:
return HRESULT_E_NOT_SUPPORTED;
case TGA_COLOR_MAPPED:
if (pHeader->bColorMapType != 1
|| pHeader->wColorMapLength == 0
|| pHeader->bBitsPerPixel != 8)
{
return HRESULT_E_NOT_SUPPORTED;
}
switch (pHeader->bColorMapSize)
{
case 24:
if (flags & TGA_FLAGS_BGR)
{
metadata.format = DXGI_FORMAT_B8G8R8X8_UNORM;
}
else
{
metadata.format = DXGI_FORMAT_R8G8B8A8_UNORM;
metadata.SetAlphaMode(TEX_ALPHA_MODE_OPAQUE);
}
break;
// Other possible values are 15, 16, and 32 which we do not support.
default:
return HRESULT_E_NOT_SUPPORTED;
}
if (convFlags)
{
*convFlags |= CONV_FLAGS_PALETTED;
}
break;
case TGA_TRUECOLOR:
case TGA_TRUECOLOR_RLE:
if (pHeader->bColorMapType != 0
|| pHeader->wColorMapLength != 0)
{
return HRESULT_E_NOT_SUPPORTED;
}
switch (pHeader->bBitsPerPixel)
{
case 16:
metadata.format = DXGI_FORMAT_B5G5R5A1_UNORM;
break;
case 24:
if (flags & TGA_FLAGS_BGR)
{
metadata.format = DXGI_FORMAT_B8G8R8X8_UNORM;
}
else
{
metadata.format = DXGI_FORMAT_R8G8B8A8_UNORM;
metadata.SetAlphaMode(TEX_ALPHA_MODE_OPAQUE);
}
if (convFlags)
*convFlags |= CONV_FLAGS_EXPAND;
break;
case 32:
metadata.format = (flags & TGA_FLAGS_BGR) ? DXGI_FORMAT_B8G8R8A8_UNORM : DXGI_FORMAT_R8G8B8A8_UNORM;
break;
default:
return HRESULT_E_NOT_SUPPORTED;
}
if (convFlags && (pHeader->bImageType == TGA_TRUECOLOR_RLE))
{
*convFlags |= CONV_FLAGS_RLE;
}
break;
case TGA_BLACK_AND_WHITE:
case TGA_BLACK_AND_WHITE_RLE:
if (pHeader->bColorMapType != 0
|| pHeader->wColorMapLength != 0)
{
return HRESULT_E_NOT_SUPPORTED;
}
switch (pHeader->bBitsPerPixel)
{
case 8:
metadata.format = DXGI_FORMAT_R8_UNORM;
break;
default:
return HRESULT_E_NOT_SUPPORTED;
}
if (convFlags && (pHeader->bImageType == TGA_BLACK_AND_WHITE_RLE))
{
*convFlags |= CONV_FLAGS_RLE;
}
break;
default:
return HRESULT_E_INVALID_DATA;
}
uint64_t sizeBytes = uint64_t(pHeader->wWidth) * uint64_t(pHeader->wHeight) * uint64_t(pHeader->bBitsPerPixel) / 8;
if (sizeBytes > UINT32_MAX)
{
return HRESULT_E_ARITHMETIC_OVERFLOW;
}
metadata.width = pHeader->wWidth;
metadata.height = pHeader->wHeight;
metadata.depth = metadata.arraySize = metadata.mipLevels = 1;
metadata.dimension = TEX_DIMENSION_TEXTURE2D;
if (convFlags)
{
if (pHeader->bDescriptor & TGA_FLAGS_INVERTX)
*convFlags |= CONV_FLAGS_INVERTX;
if (pHeader->bDescriptor & TGA_FLAGS_INVERTY)
*convFlags |= CONV_FLAGS_INVERTY;
}
offset = TGA_HEADER_LEN;
if (pHeader->bIDLength != 0)
{
offset += pHeader->bIDLength;
}
return S_OK;
}
//-------------------------------------------------------------------------------------
// Reads palette for color-mapped TGA formats
//-------------------------------------------------------------------------------------
HRESULT ReadPalette(
_In_reads_(TGA_HEADER_LEN) const uint8_t* header,
_In_reads_bytes_(size) const void* pSource,
size_t size,
TGA_FLAGS flags,
uint8_t palette[256 * 4],
size_t& colorMapSize) noexcept
{
assert(header && pSource);
auto pHeader = reinterpret_cast<const TGA_HEADER*>(header);
if (pHeader->bColorMapType != 1
|| pHeader->wColorMapLength == 0
|| pHeader->wColorMapLength > 256
|| pHeader->bColorMapSize != 24)
{
return HRESULT_E_NOT_SUPPORTED;
}
const size_t maxColorMap = size_t(pHeader->wColorMapFirst) + size_t(pHeader->wColorMapLength);
if (maxColorMap > 256)
{
return HRESULT_E_NOT_SUPPORTED;
}
colorMapSize = size_t(pHeader->wColorMapLength) * ((size_t(pHeader->bColorMapSize) + 7) >> 3);
if (colorMapSize > size)
{
return HRESULT_E_INVALID_DATA;
}
auto bytes = reinterpret_cast<const uint8_t*>(pSource);
for (size_t i = pHeader->wColorMapFirst; i < maxColorMap; ++i)
{
if (flags & TGA_FLAGS_BGR)
{
palette[i * 4 + 0] = bytes[0];
palette[i * 4 + 2] = bytes[2];
}
else
{
palette[i * 4 + 0] = bytes[2];
palette[i * 4 + 2] = bytes[0];
}
palette[i * 4 + 1] = bytes[1];
palette[i * 4 + 3] = 255;
bytes += 3;
}
return S_OK;
}
//-------------------------------------------------------------------------------------
// Set alpha for images with all 0 alpha channel
//-------------------------------------------------------------------------------------
HRESULT SetAlphaChannelToOpaque(_In_ const Image* image) noexcept
{
assert(image);
uint8_t* pPixels = image->pixels;
if (!pPixels)
return E_POINTER;
for (size_t y = 0; y < image->height; ++y)
{
CopyScanline(pPixels, image->rowPitch, pPixels, image->rowPitch, image->format, TEXP_SCANLINE_SETALPHA);
pPixels += image->rowPitch;
}
return S_OK;
}
//-------------------------------------------------------------------------------------
// Uncompress pixel data from a TGA into the target image
//-------------------------------------------------------------------------------------
HRESULT UncompressPixels(
_In_reads_bytes_(size) const void* pSource,
size_t size,
TGA_FLAGS flags,
_In_ const Image* image,
_In_ uint32_t convFlags) noexcept
{
assert(pSource && size > 0);
if (!image || !image->pixels)
return E_POINTER;
// Compute TGA image data pitch
size_t rowPitch, slicePitch;
HRESULT hr = ComputePitch(image->format, image->width, image->height, rowPitch, slicePitch,
(convFlags & CONV_FLAGS_EXPAND) ? CP_FLAGS_24BPP : CP_FLAGS_NONE);
if (FAILED(hr))
return hr;
auto sPtr = static_cast<const uint8_t*>(pSource);
const uint8_t* endPtr = sPtr + size;
bool opaquealpha = false;
switch (image->format)
{
//--------------------------------------------------------------------------- 8-bit
case DXGI_FORMAT_R8_UNORM:
for (size_t y = 0; y < image->height; ++y)
{
size_t offset = ((convFlags & CONV_FLAGS_INVERTX) ? (image->width - 1) : 0);
assert(offset < rowPitch);
uint8_t* dPtr = image->pixels
+ (image->rowPitch * ((convFlags & CONV_FLAGS_INVERTY) ? y : (image->height - y - 1)))
+ offset;
for (size_t x = 0; x < image->width; )
{
if (sPtr >= endPtr)
return E_FAIL;
if (*sPtr & 0x80)
{
// Repeat
size_t j = size_t(*sPtr & 0x7F) + 1;
if (++sPtr >= endPtr)
return E_FAIL;
for (; j > 0; --j, ++x)
{
if (x >= image->width)
return E_FAIL;
*dPtr = *sPtr;
if (convFlags & CONV_FLAGS_INVERTX)
--dPtr;
else
++dPtr;
}
++sPtr;
}
else
{
// Literal
size_t j = size_t(*sPtr & 0x7F) + 1;
++sPtr;
if (sPtr + j > endPtr)
return E_FAIL;
for (; j > 0; --j, ++x)
{
if (x >= image->width)
return E_FAIL;
*dPtr = *(sPtr++);
if (convFlags & CONV_FLAGS_INVERTX)
--dPtr;
else
++dPtr;
}
}
}
}
break;
//-------------------------------------------------------------------------- 16-bit
case DXGI_FORMAT_B5G5R5A1_UNORM:
{
uint32_t minalpha = 255;
uint32_t maxalpha = 0;
for (size_t y = 0; y < image->height; ++y)
{
size_t offset = ((convFlags & CONV_FLAGS_INVERTX) ? (image->width - 1) : 0);
assert(offset * 2 < rowPitch);
auto dPtr = reinterpret_cast<uint16_t*>(image->pixels
+ (image->rowPitch * ((convFlags & CONV_FLAGS_INVERTY) ? y : (image->height - y - 1))))
+ offset;
for (size_t x = 0; x < image->width; )
{
if (sPtr >= endPtr)
return E_FAIL;
if (*sPtr & 0x80)
{
// Repeat
size_t j = size_t(*sPtr & 0x7F) + 1;
++sPtr;
if (sPtr + 1 >= endPtr)
return E_FAIL;
auto t = static_cast<uint16_t>(uint32_t(*sPtr) | uint32_t(*(sPtr + 1u) << 8));
const uint32_t alpha = (t & 0x8000) ? 255 : 0;
minalpha = std::min(minalpha, alpha);
maxalpha = std::max(maxalpha, alpha);
sPtr += 2;
for (; j > 0; --j, ++x)
{
if (x >= image->width)
return E_FAIL;
*dPtr = t;
if (convFlags & CONV_FLAGS_INVERTX)
--dPtr;
else
++dPtr;
}
}
else
{
// Literal
size_t j = size_t(*sPtr & 0x7F) + 1;
++sPtr;
if (sPtr + (j * 2) > endPtr)
return E_FAIL;
for (; j > 0; --j, ++x)
{
if (x >= image->width)
return E_FAIL;
auto t = static_cast<uint16_t>(uint32_t(*sPtr) | uint32_t(*(sPtr + 1u) << 8));
const uint32_t alpha = (t & 0x8000) ? 255 : 0;
minalpha = std::min(minalpha, alpha);
maxalpha = std::max(maxalpha, alpha);
sPtr += 2;
*dPtr = t;
if (convFlags & CONV_FLAGS_INVERTX)
--dPtr;
else
++dPtr;
}
}
}
}
// If there are no non-zero alpha channel entries, we'll assume alpha is not used and force it to opaque
if (maxalpha == 0 && !(flags & TGA_FLAGS_ALLOW_ALL_ZERO_ALPHA))
{
opaquealpha = true;
hr = SetAlphaChannelToOpaque(image);
if (FAILED(hr))
return hr;
}
else if (minalpha == 255)
{
opaquealpha = true;
}
}
break;
//------------------------------------------------------ 24/32-bit (with swizzling)
case DXGI_FORMAT_R8G8B8A8_UNORM:
{
uint32_t minalpha = 255;
uint32_t maxalpha = 0;
for (size_t y = 0; y < image->height; ++y)
{
size_t offset = ((convFlags & CONV_FLAGS_INVERTX) ? (image->width - 1) : 0);
auto dPtr = reinterpret_cast<uint32_t*>(image->pixels
+ (image->rowPitch * ((convFlags & CONV_FLAGS_INVERTY) ? y : (image->height - y - 1))))
+ offset;
for (size_t x = 0; x < image->width; )
{
if (sPtr >= endPtr)
return E_FAIL;
if (*sPtr & 0x80)
{
// Repeat
size_t j = size_t(*sPtr & 0x7F) + 1;
++sPtr;
uint32_t t;
if (convFlags & CONV_FLAGS_EXPAND)
{
assert(offset * 3 < rowPitch);
if (sPtr + 2 >= endPtr)
return E_FAIL;
// BGR -> RGBA
t = uint32_t(*sPtr << 16) | uint32_t(*(sPtr + 1) << 8) | uint32_t(*(sPtr + 2)) | 0xFF000000;
sPtr += 3;
minalpha = maxalpha = 255;
}
else
{
assert(offset * 4 < rowPitch);
if (sPtr + 3 >= endPtr)
return E_FAIL;
// BGRA -> RGBA
const uint32_t alpha = *(sPtr + 3);
t = uint32_t(*sPtr << 16) | uint32_t(*(sPtr + 1) << 8) | uint32_t(*(sPtr + 2)) | uint32_t(alpha << 24);
minalpha = std::min(minalpha, alpha);
maxalpha = std::max(maxalpha, alpha);
sPtr += 4;
}
for (; j > 0; --j, ++x)
{
if (x >= image->width)
return E_FAIL;
*dPtr = t;
if (convFlags & CONV_FLAGS_INVERTX)
--dPtr;
else
++dPtr;
}
}
else
{
// Literal
size_t j = size_t(*sPtr & 0x7F) + 1;
++sPtr;
if (convFlags & CONV_FLAGS_EXPAND)
{
if (sPtr + (j * 3) > endPtr)
return E_FAIL;
}
else
{
if (sPtr + (j * 4) > endPtr)
return E_FAIL;
}
for (; j > 0; --j, ++x)
{
if (x >= image->width)
return E_FAIL;
if (convFlags & CONV_FLAGS_EXPAND)
{
assert(offset * 3 < rowPitch);
if (sPtr + 2 >= endPtr)
return E_FAIL;
// BGR -> RGBA
*dPtr = uint32_t(*sPtr << 16) | uint32_t(*(sPtr + 1) << 8) | uint32_t(*(sPtr + 2)) | 0xFF000000;
sPtr += 3;
minalpha = maxalpha = 255;
}
else
{
assert(offset * 4 < rowPitch);
if (sPtr + 3 >= endPtr)
return E_FAIL;
// BGRA -> RGBA
uint32_t alpha = *(sPtr + 3);
*dPtr = uint32_t(*sPtr << 16) | uint32_t(*(sPtr + 1) << 8) | uint32_t(*(sPtr + 2)) | uint32_t(alpha << 24);
minalpha = std::min(minalpha, alpha);
maxalpha = std::max(maxalpha, alpha);
sPtr += 4;
}
if (convFlags & CONV_FLAGS_INVERTX)
--dPtr;
else
++dPtr;
}
}
}
}
// If there are no non-zero alpha channel entries, we'll assume alpha is not used and force it to opaque
if (maxalpha == 0 && !(flags & TGA_FLAGS_ALLOW_ALL_ZERO_ALPHA))
{
opaquealpha = true;
hr = SetAlphaChannelToOpaque(image);
if (FAILED(hr))
return hr;
}
else if (minalpha == 255)
{
opaquealpha = true;
}
}
break;
//-------------------------------------------------------------------- 32-bit (BGR)
case DXGI_FORMAT_B8G8R8A8_UNORM:
{
assert((convFlags & CONV_FLAGS_EXPAND) == 0);
uint32_t minalpha = 255;
uint32_t maxalpha = 0;
for (size_t y = 0; y < image->height; ++y)
{
size_t offset = ((convFlags & CONV_FLAGS_INVERTX) ? (image->width - 1) : 0);
auto dPtr = reinterpret_cast<uint32_t*>(image->pixels
+ (image->rowPitch * ((convFlags & CONV_FLAGS_INVERTY) ? y : (image->height - y - 1))))
+ offset;
for (size_t x = 0; x < image->width; )
{
if (sPtr >= endPtr)
return E_FAIL;
if (*sPtr & 0x80)
{
// Repeat
size_t j = size_t(*sPtr & 0x7F) + 1;
++sPtr;
assert(offset * 4 < rowPitch);
if (sPtr + 3 >= endPtr)
return E_FAIL;
const uint32_t alpha = *(sPtr + 3);
auto t = *reinterpret_cast<const uint32_t*>(sPtr);
minalpha = std::min(minalpha, alpha);
maxalpha = std::max(maxalpha, alpha);
sPtr += 4;
for (; j > 0; --j, ++x)
{
if (x >= image->width)
return E_FAIL;
*dPtr = t;
if (convFlags & CONV_FLAGS_INVERTX)
--dPtr;
else
++dPtr;
}
}
else
{
// Literal
size_t j = size_t(*sPtr & 0x7F) + 1;
++sPtr;
if (sPtr + (j * 4) > endPtr)
return E_FAIL;
for (; j > 0; --j, ++x)
{
if (x >= image->width)
return E_FAIL;
assert(offset * 4 < rowPitch);
if (sPtr + 3 >= endPtr)
return E_FAIL;
const uint32_t alpha = *(sPtr + 3);
*dPtr = *reinterpret_cast<const uint32_t*>(sPtr);
minalpha = std::min(minalpha, alpha);
maxalpha = std::max(maxalpha, alpha);
sPtr += 4;
if (convFlags & CONV_FLAGS_INVERTX)
--dPtr;
else
++dPtr;
}
}
}
}
// If there are no non-zero alpha channel entries, we'll assume alpha is not used and force it to opaque
if (maxalpha == 0 && !(flags & TGA_FLAGS_ALLOW_ALL_ZERO_ALPHA))
{
opaquealpha = true;
hr = SetAlphaChannelToOpaque(image);
if (FAILED(hr))
return hr;
}
else if (minalpha == 255)
{
opaquealpha = true;
}
}
break;
//-------------------------------------------------------------------- 24-bit (BGR)
case DXGI_FORMAT_B8G8R8X8_UNORM:
{
assert((convFlags & CONV_FLAGS_EXPAND) != 0);
for (size_t y = 0; y < image->height; ++y)
{
size_t offset = ((convFlags & CONV_FLAGS_INVERTX) ? (image->width - 1) : 0);
auto dPtr = reinterpret_cast<uint32_t*>(image->pixels
+ (image->rowPitch * ((convFlags & CONV_FLAGS_INVERTY) ? y : (image->height - y - 1))))
+ offset;
for (size_t x = 0; x < image->width; )
{
if (sPtr >= endPtr)
return E_FAIL;
if (*sPtr & 0x80)
{
// Repeat
size_t j = size_t(*sPtr & 0x7F) + 1;
++sPtr;
assert(offset * 3 < rowPitch);
if (sPtr + 2 >= endPtr)
return E_FAIL;
uint32_t t = uint32_t(*sPtr) | uint32_t(*(sPtr + 1) << 8) | uint32_t(*(sPtr + 2) << 16);
sPtr += 3;
for (; j > 0; --j, ++x)
{
if (x >= image->width)
return E_FAIL;
*dPtr = t;
if (convFlags & CONV_FLAGS_INVERTX)
--dPtr;
else
++dPtr;
}
}
else
{
// Literal
size_t j = size_t(*sPtr & 0x7F) + 1;
++sPtr;
if (sPtr + (j * 3) > endPtr)
return E_FAIL;
for (; j > 0; --j, ++x)
{
if (x >= image->width)
return E_FAIL;
assert(offset * 3 < rowPitch);
if (sPtr + 2 >= endPtr)
return E_FAIL;
*dPtr = uint32_t(*sPtr) | uint32_t(*(sPtr + 1) << 8) | uint32_t(*(sPtr + 2) << 16);
sPtr += 3;
if (convFlags & CONV_FLAGS_INVERTX)
--dPtr;
else
++dPtr;
}
}
}
}
}
break;
//---------------------------------------------------------------------------------
default:
return E_FAIL;
}
return opaquealpha ? S_FALSE : S_OK;
}
//-------------------------------------------------------------------------------------
// Copies pixel data from a TGA into the target image
//-------------------------------------------------------------------------------------
HRESULT CopyPixels(
_In_reads_bytes_(size) const void* pSource,
size_t size,
TGA_FLAGS flags,
_In_ const Image* image,
_In_ uint32_t convFlags,
_In_opt_ const uint8_t* palette) noexcept
{
assert(pSource && size > 0);
if (!image || !image->pixels)
return E_POINTER;
// Compute TGA image data pitch
size_t rowPitch, slicePitch;
HRESULT hr = ComputePitch(image->format, image->width, image->height,
rowPitch, slicePitch,
(convFlags & CONV_FLAGS_EXPAND) ? CP_FLAGS_24BPP : CP_FLAGS_NONE);
if (FAILED(hr))
return hr;
auto sPtr = static_cast<const uint8_t*>(pSource);
const uint8_t* endPtr = sPtr + size;
bool opaquealpha = false;
if ((convFlags & CONV_FLAGS_PALETTED) != 0)
{
if (!palette)
return E_UNEXPECTED;
const auto table = reinterpret_cast<const uint32_t*>(palette);
for (size_t y = 0; y < image->height; ++y)
{
size_t offset = ((convFlags & CONV_FLAGS_INVERTX) ? (image->width - 1) : 0);
assert(offset < rowPitch);
auto dPtr = reinterpret_cast<uint32_t*>(image->pixels
+ (image->rowPitch * ((convFlags & CONV_FLAGS_INVERTY) ? y : (image->height - y - 1))))
+ offset;
for (size_t x = 0; x < image->width; ++x)
{
if (sPtr >= endPtr)
return E_FAIL;
*dPtr = table[*(sPtr++)];
if (convFlags & CONV_FLAGS_INVERTX)
--dPtr;
else
++dPtr;
}
}
}
else
{
switch (image->format)
{
//----------------------------------------------------------------------- 8-bit
case DXGI_FORMAT_R8_UNORM:
for (size_t y = 0; y < image->height; ++y)
{
size_t offset = ((convFlags & CONV_FLAGS_INVERTX) ? (image->width - 1) : 0);
assert(offset < rowPitch);
uint8_t* dPtr = image->pixels
+ (image->rowPitch * ((convFlags & CONV_FLAGS_INVERTY) ? y : (image->height - y - 1)))
+ offset;
for (size_t x = 0; x < image->width; ++x)
{
if (sPtr >= endPtr)
return E_FAIL;
*dPtr = *(sPtr++);
if (convFlags & CONV_FLAGS_INVERTX)
--dPtr;
else
++dPtr;
}
}
break;
//---------------------------------------------------------------------- 16-bit
case DXGI_FORMAT_B5G5R5A1_UNORM:
{
uint32_t minalpha = 255;
uint32_t maxalpha = 0;
for (size_t y = 0; y < image->height; ++y)
{
size_t offset = ((convFlags & CONV_FLAGS_INVERTX) ? (image->width - 1) : 0);
assert(offset * 2 < rowPitch);
auto dPtr = reinterpret_cast<uint16_t*>(image->pixels
+ (image->rowPitch * ((convFlags & CONV_FLAGS_INVERTY) ? y : (image->height - y - 1))))
+ offset;
for (size_t x = 0; x < image->width; ++x)
{
if (sPtr + 1 >= endPtr)
return E_FAIL;
auto t = static_cast<uint16_t>(uint32_t(*sPtr) | uint32_t(*(sPtr + 1u) << 8));
sPtr += 2;
*dPtr = t;
const uint32_t alpha = (t & 0x8000) ? 255 : 0;
minalpha = std::min(minalpha, alpha);
maxalpha = std::max(maxalpha, alpha);
if (convFlags & CONV_FLAGS_INVERTX)
--dPtr;
else
++dPtr;
}
}
// If there are no non-zero alpha channel entries, we'll assume alpha is not used and force it to opaque
if (maxalpha == 0 && !(flags & TGA_FLAGS_ALLOW_ALL_ZERO_ALPHA))
{
opaquealpha = true;
hr = SetAlphaChannelToOpaque(image);
if (FAILED(hr))
return hr;
}
else if (minalpha == 255)
{
opaquealpha = true;
}
}
break;
//-------------------------------------------------- 24/32-bit (with swizzling)
case DXGI_FORMAT_R8G8B8A8_UNORM:
{
uint32_t minalpha = 255;
uint32_t maxalpha = 0;
for (size_t y = 0; y < image->height; ++y)
{
size_t offset = ((convFlags & CONV_FLAGS_INVERTX) ? (image->width - 1) : 0);
auto dPtr = reinterpret_cast<uint32_t*>(image->pixels
+ (image->rowPitch * ((convFlags & CONV_FLAGS_INVERTY) ? y : (image->height - y - 1))))
+ offset;
for (size_t x = 0; x < image->width; ++x)
{
if (convFlags & CONV_FLAGS_EXPAND)
{
assert(offset * 3 < rowPitch);
if (sPtr + 2 >= endPtr)
return E_FAIL;
// BGR -> RGBA
*dPtr = uint32_t(*sPtr << 16) | uint32_t(*(sPtr + 1) << 8) | uint32_t(*(sPtr + 2)) | 0xFF000000;
sPtr += 3;
minalpha = maxalpha = 255;
}
else
{
assert(offset * 4 < rowPitch);
if (sPtr + 3 >= endPtr)
return E_FAIL;
// BGRA -> RGBA
uint32_t alpha = *(sPtr + 3);
*dPtr = uint32_t(*sPtr << 16) | uint32_t(*(sPtr + 1) << 8) | uint32_t(*(sPtr + 2)) | uint32_t(alpha << 24);
minalpha = std::min(minalpha, alpha);
maxalpha = std::max(maxalpha, alpha);
sPtr += 4;
}
if (convFlags & CONV_FLAGS_INVERTX)
--dPtr;
else
++dPtr;
}
}
// If there are no non-zero alpha channel entries, we'll assume alpha is not used and force it to opaque
if (maxalpha == 0 && !(flags & TGA_FLAGS_ALLOW_ALL_ZERO_ALPHA))
{
opaquealpha = true;
hr = SetAlphaChannelToOpaque(image);
if (FAILED(hr))
return hr;
}
else if (minalpha == 255)
{
opaquealpha = true;
}
}
break;
//---------------------------------------------------------------- 32-bit (BGR)
case DXGI_FORMAT_B8G8R8A8_UNORM:
{
assert((convFlags & CONV_FLAGS_EXPAND) == 0);
uint32_t minalpha = 255;
uint32_t maxalpha = 0;
for (size_t y = 0; y < image->height; ++y)
{
size_t offset = ((convFlags & CONV_FLAGS_INVERTX) ? (image->width - 1) : 0);
auto dPtr = reinterpret_cast<uint32_t*>(image->pixels
+ (image->rowPitch * ((convFlags & CONV_FLAGS_INVERTY) ? y : (image->height - y - 1))))
+ offset;
for (size_t x = 0; x < image->width; ++x)
{
assert(offset * 4 < rowPitch);
if (sPtr + 3 >= endPtr)
return E_FAIL;
const uint32_t alpha = *(sPtr + 3);
*dPtr = *reinterpret_cast<const uint32_t*>(sPtr);
minalpha = std::min(minalpha, alpha);
maxalpha = std::max(maxalpha, alpha);
sPtr += 4;
if (convFlags & CONV_FLAGS_INVERTX)
--dPtr;
else
++dPtr;
}
}
// If there are no non-zero alpha channel entries, we'll assume alpha is not used and force it to opaque
if (maxalpha == 0 && !(flags & TGA_FLAGS_ALLOW_ALL_ZERO_ALPHA))
{
opaquealpha = true;
hr = SetAlphaChannelToOpaque(image);
if (FAILED(hr))
return hr;
}
else if (minalpha == 255)
{
opaquealpha = true;
}
}
break;
//---------------------------------------------------------------- 24-bit (BGR)
case DXGI_FORMAT_B8G8R8X8_UNORM:
{
assert((convFlags & CONV_FLAGS_EXPAND) != 0);
for (size_t y = 0; y < image->height; ++y)
{
size_t offset = ((convFlags & CONV_FLAGS_INVERTX) ? (image->width - 1) : 0);
auto dPtr = reinterpret_cast<uint32_t*>(image->pixels
+ (image->rowPitch * ((convFlags & CONV_FLAGS_INVERTY) ? y : (image->height - y - 1))))
+ offset;
for (size_t x = 0; x < image->width; ++x)
{
assert(offset * 3 < rowPitch);
if (sPtr + 2 >= endPtr)
return E_FAIL;
*dPtr = uint32_t(*sPtr) | uint32_t(*(sPtr + 1) << 8) | uint32_t(*(sPtr + 2) << 16);
sPtr += 3;
if (convFlags & CONV_FLAGS_INVERTX)
--dPtr;
else
++dPtr;
}
}
}
break;
//-----------------------------------------------------------------------------
default:
return E_FAIL;
}
}
return opaquealpha ? S_FALSE : S_OK;
}
//-------------------------------------------------------------------------------------
// Encodes TGA file header
//-------------------------------------------------------------------------------------
HRESULT EncodeTGAHeader(_In_ const Image& image, _Out_ TGA_HEADER& header, _Inout_ uint32_t& convFlags) noexcept
{
memset(&header, 0, TGA_HEADER_LEN);
if ((image.width > UINT16_MAX)
|| (image.height > UINT16_MAX))
{
return HRESULT_E_NOT_SUPPORTED;
}
header.wWidth = static_cast<uint16_t>(image.width);
header.wHeight = static_cast<uint16_t>(image.height);
switch (image.format)
{
case DXGI_FORMAT_R8G8B8A8_UNORM:
case DXGI_FORMAT_R8G8B8A8_UNORM_SRGB:
header.bImageType = TGA_TRUECOLOR;
header.bBitsPerPixel = 32;
header.bDescriptor = TGA_FLAGS_INVERTY | 8;
convFlags |= CONV_FLAGS_SWIZZLE;
break;
case DXGI_FORMAT_B8G8R8A8_UNORM:
case DXGI_FORMAT_B8G8R8A8_UNORM_SRGB:
header.bImageType = TGA_TRUECOLOR;
header.bBitsPerPixel = 32;
header.bDescriptor = TGA_FLAGS_INVERTY | 8;
break;
case DXGI_FORMAT_B8G8R8X8_UNORM:
case DXGI_FORMAT_B8G8R8X8_UNORM_SRGB:
header.bImageType = TGA_TRUECOLOR;
header.bBitsPerPixel = 24;
header.bDescriptor = TGA_FLAGS_INVERTY;
convFlags |= CONV_FLAGS_888;
break;
case DXGI_FORMAT_R8_UNORM:
case DXGI_FORMAT_A8_UNORM:
header.bImageType = TGA_BLACK_AND_WHITE;
header.bBitsPerPixel = 8;
header.bDescriptor = TGA_FLAGS_INVERTY;
break;
case DXGI_FORMAT_B5G5R5A1_UNORM:
header.bImageType = TGA_TRUECOLOR;
header.bBitsPerPixel = 16;
header.bDescriptor = TGA_FLAGS_INVERTY | 1;
break;
default:
return HRESULT_E_NOT_SUPPORTED;
}
return S_OK;
}
//-------------------------------------------------------------------------------------
// Copies BGRX data to form BGR 24bpp data
//-------------------------------------------------------------------------------------
#pragma warning(suppress: 6001 6101) // In the case where outSize is insufficient we do not write to pDestination
void Copy24bppScanline(
_Out_writes_bytes_(outSize) void* pDestination,
_In_ size_t outSize,
_In_reads_bytes_(inSize) const void* pSource,
_In_ size_t inSize) noexcept
{
assert(pDestination && outSize > 0);
assert(pSource && inSize > 0);
assert(pDestination != pSource);
const uint32_t * __restrict sPtr = static_cast<const uint32_t*>(pSource);
uint8_t * __restrict dPtr = static_cast<uint8_t*>(pDestination);
if (inSize >= 4 && outSize >= 3)
{
const uint8_t* endPtr = dPtr + outSize;
for (size_t count = 0; count < (inSize - 3); count += 4)
{
uint32_t t = *(sPtr++);
if (dPtr + 3 > endPtr)
return;
*(dPtr++) = uint8_t(t & 0xFF); // Blue
*(dPtr++) = uint8_t((t & 0xFF00) >> 8); // Green
*(dPtr++) = uint8_t((t & 0xFF0000) >> 16); // Red
}
}
}
//-------------------------------------------------------------------------------------
// TGA 2.0 Extension helpers
//-------------------------------------------------------------------------------------
void SetExtension(_In_ TGA_EXTENSION *ext, TGA_FLAGS flags, const TexMetadata& metadata) noexcept
{
memset(ext, 0, sizeof(TGA_EXTENSION));
ext->wSize = sizeof(TGA_EXTENSION);
memcpy(ext->szSoftwareId, "DirectXTex", sizeof("DirectXTex"));
ext->wVersionNumber = DIRECTX_TEX_VERSION;
ext->bVersionLetter = ' ';
const bool sRGB = ((flags & TGA_FLAGS_FORCE_LINEAR) == 0) && ((flags & TGA_FLAGS_FORCE_SRGB) != 0 || IsSRGB(metadata.format));
if (sRGB)
{
ext->wGammaNumerator = 22;
ext->wGammaDenominator = 10;
}
else if (flags & TGA_FLAGS_FORCE_LINEAR)
{
ext->wGammaNumerator = 1;
ext->wGammaDenominator = 1;
}
switch (metadata.GetAlphaMode())
{
default:
case TEX_ALPHA_MODE_UNKNOWN:
ext->bAttributesType = HasAlpha(metadata.format) ? TGA_ATTRIBUTE_UNDEFINED : TGA_ATTRIBUTE_NONE;
break;
case TEX_ALPHA_MODE_STRAIGHT:
ext->bAttributesType = TGA_ATTRIBUTE_ALPHA;
break;
case TEX_ALPHA_MODE_PREMULTIPLIED:
ext->bAttributesType = TGA_ATTRIBUTE_PREMULTIPLIED;
break;
case TEX_ALPHA_MODE_OPAQUE:
ext->bAttributesType = TGA_ATTRIBUTE_IGNORED;
break;
case TEX_ALPHA_MODE_CUSTOM:
ext->bAttributesType = TGA_ATTRIBUTE_UNDEFINED;
break;
}
// Set file time stamp
{
time_t now = {};
time(&now);
#ifdef _WIN32
tm info;
auto pinfo = &info;
if (!gmtime_s(pinfo, &now))
#else
const tm* pinfo = gmtime(&now);
if (pinfo)
#endif
{
ext->wStampMonth = static_cast<uint16_t>(pinfo->tm_mon + 1);
ext->wStampDay = static_cast<uint16_t>(pinfo->tm_mday);
ext->wStampYear = static_cast<uint16_t>(pinfo->tm_year + 1900);
ext->wStampHour = static_cast<uint16_t>(pinfo->tm_hour);
ext->wStampMinute = static_cast<uint16_t>(pinfo->tm_min);
ext->wStampSecond = static_cast<uint16_t>(pinfo->tm_sec);
}
}
}
TEX_ALPHA_MODE GetAlphaModeFromExtension(_In_opt_ const TGA_EXTENSION *ext) noexcept
{
if (ext && ext->wSize == sizeof(TGA_EXTENSION))
{
switch (ext->bAttributesType)
{
case TGA_ATTRIBUTE_IGNORED: return TEX_ALPHA_MODE_OPAQUE;
case TGA_ATTRIBUTE_UNDEFINED: return TEX_ALPHA_MODE_CUSTOM;
case TGA_ATTRIBUTE_ALPHA: return TEX_ALPHA_MODE_STRAIGHT;
case TGA_ATTRIBUTE_PREMULTIPLIED: return TEX_ALPHA_MODE_PREMULTIPLIED;
default: return TEX_ALPHA_MODE_UNKNOWN;
}
}
return TEX_ALPHA_MODE_UNKNOWN;
}
DXGI_FORMAT GetSRGBFromExtension(_In_opt_ const TGA_EXTENSION* ext, DXGI_FORMAT format, TGA_FLAGS flags, _In_opt_ ScratchImage* image) noexcept
{
bool sRGB = false;
if (ext && ext->wSize == sizeof(TGA_EXTENSION) && ext->wGammaDenominator != 0)
{
const auto gamma = static_cast<float>(ext->wGammaNumerator) / static_cast<float>(ext->wGammaDenominator);
if (fabsf(gamma - 2.2f) < GAMMA_EPSILON || fabsf(gamma - 2.4f) < GAMMA_EPSILON)
{
sRGB = true;
}
}
else
{
sRGB = (flags & TGA_FLAGS_DEFAULT_SRGB) != 0;
}
if (sRGB)
{
format = MakeSRGB(format);
if (image)
{
image->OverrideFormat(format);
}
}
return format;
}
}
//=====================================================================================
// Entry-points
//=====================================================================================
//-------------------------------------------------------------------------------------
// Obtain metadata from TGA file in memory/on disk
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT DirectX::GetMetadataFromTGAMemory(
const uint8_t* pSource,
size_t size,
TGA_FLAGS flags,
TexMetadata& metadata) noexcept
{
if (!pSource || size == 0)
return E_INVALIDARG;
size_t offset;
HRESULT hr = DecodeTGAHeader(pSource, size, flags, metadata, offset, nullptr);
if (FAILED(hr))
return hr;
// Optional TGA 2.0 footer & extension area
const TGA_EXTENSION* ext = nullptr;
if (size >= sizeof(TGA_FOOTER))
{
auto footer = reinterpret_cast<const TGA_FOOTER*>(static_cast<const uint8_t*>(pSource) + size - sizeof(TGA_FOOTER));
if (memcmp(footer->Signature, g_Signature, sizeof(g_Signature)) == 0)
{
if (footer->dwExtensionOffset != 0
&& ((footer->dwExtensionOffset + sizeof(TGA_EXTENSION)) <= size))
{
ext = reinterpret_cast<const TGA_EXTENSION*>(static_cast<const uint8_t*>(pSource) + footer->dwExtensionOffset);
metadata.SetAlphaMode(GetAlphaModeFromExtension(ext));
}
}
}
if (!(flags & TGA_FLAGS_IGNORE_SRGB))
{
metadata.format = GetSRGBFromExtension(ext, metadata.format, flags, nullptr);
}
return S_OK;
}
_Use_decl_annotations_
HRESULT DirectX::GetMetadataFromTGAFile(const wchar_t* szFile, TGA_FLAGS flags, TexMetadata& metadata) noexcept
{
if (!szFile)
return E_INVALIDARG;
#ifdef _WIN32
ScopedHandle hFile(safe_handle(CreateFile2(
szFile,
GENERIC_READ, FILE_SHARE_READ, OPEN_EXISTING,
nullptr)));
if (!hFile)
{
return HRESULT_FROM_WIN32(GetLastError());
}
// Get the file size
FILE_STANDARD_INFO fileInfo;
if (!GetFileInformationByHandleEx(hFile.get(), FileStandardInfo, &fileInfo, sizeof(fileInfo)))
{
return HRESULT_FROM_WIN32(GetLastError());
}
// File is too big for 32-bit allocation, so reject read (4 GB should be plenty large enough for a valid TGA file)
if (fileInfo.EndOfFile.HighPart > 0)
{
return HRESULT_E_FILE_TOO_LARGE;
}
const size_t len = fileInfo.EndOfFile.LowPart;
#else // !WIN32
std::ifstream inFile(std::filesystem::path(szFile), std::ios::in | std::ios::binary | std::ios::ate);
if (!inFile)
return E_FAIL;
std::streampos fileLen = inFile.tellg();
if (!inFile)
return E_FAIL;
if (fileLen > UINT32_MAX)
return HRESULT_E_FILE_TOO_LARGE;
inFile.seekg(0, std::ios::beg);
if (!inFile)
return E_FAIL;
size_t len = fileLen;
#endif
// Need at least enough data to fill the standard header to be a valid TGA
if (len < TGA_HEADER_LEN)
{
return E_FAIL;
}
// Read the standard header (we don't need the file footer to parse the file)
uint8_t header[TGA_HEADER_LEN] = {};
#ifdef _WIN32
DWORD bytesRead = 0;
if (!ReadFile(hFile.get(), header, TGA_HEADER_LEN, &bytesRead, nullptr))
{
return HRESULT_FROM_WIN32(GetLastError());
}
const auto headerLen = static_cast<size_t>(bytesRead);
#else
inFile.read(reinterpret_cast<char*>(header), TGA_HEADER_LEN);
if (!inFile)
return E_FAIL;
size_t headerLen = TGA_HEADER_LEN;
#endif
size_t offset;
HRESULT hr = DecodeTGAHeader(header, headerLen, flags, metadata, offset, nullptr);
if (FAILED(hr))
return hr;
// Optional TGA 2.0 footer & extension area
const TGA_EXTENSION* ext = nullptr;
TGA_EXTENSION extData = {};
{
TGA_FOOTER footer = {};
#ifdef _WIN32
if (SetFilePointer(hFile.get(), -static_cast<int>(sizeof(TGA_FOOTER)), nullptr, FILE_END) != INVALID_SET_FILE_POINTER)
{
if (!ReadFile(hFile.get(), &footer, sizeof(TGA_FOOTER), &bytesRead, nullptr))
{
return HRESULT_FROM_WIN32(GetLastError());
}
if (bytesRead != sizeof(TGA_FOOTER))
{
return E_FAIL;
}
}
#else
inFile.seekg(-static_cast<int>(sizeof(TGA_FOOTER)), std::ios::end);
if (inFile)
{
inFile.read(reinterpret_cast<char*>(&footer), sizeof(TGA_FOOTER));
if (!inFile)
return E_FAIL;
}
#endif
if (memcmp(footer.Signature, g_Signature, sizeof(g_Signature)) == 0)
{
if (footer.dwExtensionOffset != 0
&& ((footer.dwExtensionOffset + sizeof(TGA_EXTENSION)) <= len))
{
#ifdef _WIN32
const LARGE_INTEGER filePos = { { static_cast<DWORD>(footer.dwExtensionOffset), 0 } };
if (SetFilePointerEx(hFile.get(), filePos, nullptr, FILE_BEGIN))
{
if (ReadFile(hFile.get(), &extData, sizeof(TGA_EXTENSION), &bytesRead, nullptr)
&& bytesRead == sizeof(TGA_EXTENSION))
{
ext = &extData;
metadata.SetAlphaMode(GetAlphaModeFromExtension(ext));
}
}
#else // !WIN32
inFile.seekg(static_cast<std::streampos>(footer.dwExtensionOffset), std::ios::beg);
if (inFile)
{
inFile.read(reinterpret_cast<char*>(&extData), sizeof(TGA_EXTENSION));
if (inFile)
{
ext = &extData;
metadata.SetAlphaMode(GetAlphaModeFromExtension(ext));
}
}
#endif
}
}
}
if (!(flags & TGA_FLAGS_IGNORE_SRGB))
{
metadata.format = GetSRGBFromExtension(ext, metadata.format, flags, nullptr);
}
return S_OK;
}
//-------------------------------------------------------------------------------------
// Load a TGA file in memory
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT DirectX::LoadFromTGAMemory(
const uint8_t* pSource,
size_t size,
TGA_FLAGS flags,
TexMetadata* metadata,
ScratchImage& image) noexcept
{
if (!pSource || size == 0)
return E_INVALIDARG;
image.Release();
size_t offset;
uint32_t convFlags = 0;
TexMetadata mdata;
HRESULT hr = DecodeTGAHeader(pSource, size, flags, mdata, offset, &convFlags);
if (FAILED(hr))
return hr;
if (offset > size)
return HRESULT_E_INVALID_DATA;
size_t paletteOffset = 0;
uint8_t palette[256 * 4] = {};
if (convFlags & CONV_FLAGS_PALETTED)
{
const size_t remaining = size - offset;
if (remaining == 0)
return E_FAIL;
auto pColorMap = static_cast<const uint8_t*>(pSource) + offset;
_Analysis_assume_(size > TGA_HEADER_LEN);
hr = ReadPalette(static_cast<const uint8_t*>(pSource), pColorMap, remaining, flags,
palette, paletteOffset);
if (FAILED(hr))
return hr;
}
const size_t remaining = size - offset - paletteOffset;
if (remaining == 0)
return HRESULT_E_HANDLE_EOF;
const void* pPixels = static_cast<const uint8_t*>(pSource) + offset + paletteOffset;
hr = image.Initialize2D(mdata.format, mdata.width, mdata.height, 1, 1, CP_FLAGS_LIMIT_4GB);
if (FAILED(hr))
return hr;
if (convFlags & CONV_FLAGS_RLE)
{
hr = UncompressPixels(pPixels, remaining, flags, image.GetImage(0, 0, 0), convFlags);
}
else
{
hr = CopyPixels(pPixels, remaining, flags, image.GetImage(0, 0, 0), convFlags, palette);
}
if (FAILED(hr))
{
image.Release();
return hr;
}
// Optional TGA 2.0 footer & extension area
const TGA_EXTENSION* ext = nullptr;
if (size >= sizeof(TGA_FOOTER))
{
auto footer = reinterpret_cast<const TGA_FOOTER*>(static_cast<const uint8_t*>(pSource) + size - sizeof(TGA_FOOTER));
if (memcmp(footer->Signature, g_Signature, sizeof(g_Signature)) == 0)
{
if (footer->dwExtensionOffset != 0
&& ((footer->dwExtensionOffset + sizeof(TGA_EXTENSION)) <= size))
{
ext = reinterpret_cast<const TGA_EXTENSION*>(static_cast<const uint8_t*>(pSource) + footer->dwExtensionOffset);
}
}
}
if (!(flags & TGA_FLAGS_IGNORE_SRGB))
{
mdata.format = GetSRGBFromExtension(ext, mdata.format, flags, &image);
}
if (metadata)
{
memcpy(metadata, &mdata, sizeof(TexMetadata));
if (hr == S_FALSE)
{
metadata->SetAlphaMode(TEX_ALPHA_MODE_OPAQUE);
}
else if (ext)
{
metadata->SetAlphaMode(GetAlphaModeFromExtension(ext));
}
}
return S_OK;
}
//-------------------------------------------------------------------------------------
// Load a TGA file from disk
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT DirectX::LoadFromTGAFile(
const wchar_t* szFile,
TGA_FLAGS flags,
TexMetadata* metadata,
ScratchImage& image) noexcept
{
if (!szFile)
return E_INVALIDARG;
image.Release();
#ifdef _WIN32
ScopedHandle hFile(safe_handle(CreateFile2(
szFile,
GENERIC_READ, FILE_SHARE_READ, OPEN_EXISTING,
nullptr)));
if (!hFile)
{
return HRESULT_FROM_WIN32(GetLastError());
}
// Get the file size
FILE_STANDARD_INFO fileInfo;
if (!GetFileInformationByHandleEx(hFile.get(), FileStandardInfo, &fileInfo, sizeof(fileInfo)))
{
return HRESULT_FROM_WIN32(GetLastError());
}
// File is too big for 32-bit allocation, so reject read (4 GB should be plenty large enough for a valid TGA file)
if (fileInfo.EndOfFile.HighPart > 0)
{
return HRESULT_E_FILE_TOO_LARGE;
}
const size_t len = fileInfo.EndOfFile.LowPart;
#else // !WIN32
std::ifstream inFile(std::filesystem::path(szFile), std::ios::in | std::ios::binary | std::ios::ate);
if (!inFile)
return E_FAIL;
std::streampos fileLen = inFile.tellg();
if (!inFile)
return E_FAIL;
if (fileLen > UINT32_MAX)
return HRESULT_E_FILE_TOO_LARGE;
inFile.seekg(0, std::ios::beg);
if (!inFile)
return E_FAIL;
size_t len = fileLen;
#endif
// Need at least enough data to fill the header to be a valid TGA
if (len < TGA_HEADER_LEN)
{
return E_FAIL;
}
// Read the header
uint8_t header[TGA_HEADER_LEN] = {};
#ifdef _WIN32
DWORD bytesRead = 0;
if (!ReadFile(hFile.get(), header, TGA_HEADER_LEN, &bytesRead, nullptr))
{
return HRESULT_FROM_WIN32(GetLastError());
}
const auto headerLen = static_cast<size_t>(bytesRead);
#else
inFile.read(reinterpret_cast<char*>(header), TGA_HEADER_LEN);
if (!inFile)
return E_FAIL;
size_t headerLen = TGA_HEADER_LEN;
#endif
size_t offset;
uint32_t convFlags = 0;
TexMetadata mdata;
HRESULT hr = DecodeTGAHeader(header, headerLen, flags, mdata, offset, &convFlags);
if (FAILED(hr))
return hr;
if (offset > len)
return HRESULT_E_INVALID_DATA;
// Read the pixels
const auto remaining = len - offset;
if (remaining == 0)
return E_FAIL;
if (offset > TGA_HEADER_LEN)
{
#ifdef _WIN32
// Skip past the id string
const LARGE_INTEGER filePos = { { static_cast<DWORD>(offset), 0 } };
if (!SetFilePointerEx(hFile.get(), filePos, nullptr, FILE_BEGIN))
{
return HRESULT_FROM_WIN32(GetLastError());
}
#else
inFile.seekg(offset, std::ios::beg);
if (!inFile)
return E_FAIL;
#endif
}
hr = image.Initialize2D(mdata.format, mdata.width, mdata.height, 1, 1, CP_FLAGS_LIMIT_4GB);
if (FAILED(hr))
return hr;
assert(image.GetPixels());
bool opaquealpha = false;
if (!(convFlags & (CONV_FLAGS_RLE | CONV_FLAGS_EXPAND | CONV_FLAGS_INVERTX | CONV_FLAGS_PALETTED)) && (convFlags & CONV_FLAGS_INVERTY))
{
// This case we can read directly into the image buffer in place
if (remaining < image.GetPixelsSize())
{
image.Release();
return HRESULT_E_HANDLE_EOF;
}
if (image.GetPixelsSize() > UINT32_MAX)
{
image.Release();
return HRESULT_E_ARITHMETIC_OVERFLOW;
}
#ifdef _WIN32
if (!ReadFile(hFile.get(), image.GetPixels(), static_cast<DWORD>(image.GetPixelsSize()), &bytesRead, nullptr))
{
image.Release();
return HRESULT_FROM_WIN32(GetLastError());
}
if (bytesRead != image.GetPixelsSize())
{
image.Release();
return E_FAIL;
}
#else
inFile.read(reinterpret_cast<char*>(image.GetPixels()), image.GetPixelsSize());
if (!inFile)
{
image.Release();
return E_FAIL;
}
#endif
switch (mdata.format)
{
case DXGI_FORMAT_R8G8B8A8_UNORM:
{
// TGA stores 32-bit data in BGRA form, need to swizzle to RGBA
assert(image.GetImageCount() == 1);
const Image* img = image.GetImage(0, 0, 0);
if (!img)
{
image.Release();
return E_POINTER;
}
uint8_t *pPixels = img->pixels;
if (!pPixels)
{
image.Release();
return E_POINTER;
}
size_t rowPitch = img->rowPitch;
// Scan for non-zero alpha channel
uint32_t minalpha = 255;
uint32_t maxalpha = 0;
for (size_t h = 0; h < img->height; ++h)
{
auto sPtr = reinterpret_cast<const uint32_t*>(pPixels);
for (size_t x = 0; x < img->width; ++x)
{
const uint32_t alpha = ((*sPtr & 0xFF000000) >> 24);
minalpha = std::min(minalpha, alpha);
maxalpha = std::max(maxalpha, alpha);
++sPtr;
}
pPixels += rowPitch;
}
uint32_t tflags = TEXP_SCANLINE_NONE;
if (maxalpha == 0 && !(flags & TGA_FLAGS_ALLOW_ALL_ZERO_ALPHA))
{
opaquealpha = true;
tflags = TEXP_SCANLINE_SETALPHA;
}
else if (minalpha == 255)
{
opaquealpha = true;
}
// Swizzle scanlines
pPixels = img->pixels;
for (size_t h = 0; h < img->height; ++h)
{
SwizzleScanline(pPixels, rowPitch, pPixels, rowPitch, mdata.format, tflags);
pPixels += rowPitch;
}
}
break;
case DXGI_FORMAT_B8G8R8A8_UNORM:
{
assert(image.GetImageCount() == 1);
const Image* img = image.GetImage(0, 0, 0);
if (!img)
{
image.Release();
return E_POINTER;
}
// Scan for non-zero alpha channel
uint32_t minalpha = 255;
uint32_t maxalpha = 0;
const uint8_t *pPixels = img->pixels;
if (!pPixels)
{
image.Release();
return E_POINTER;
}
const size_t rowPitch = img->rowPitch;
for (size_t h = 0; h < img->height; ++h)
{
auto sPtr = reinterpret_cast<const uint32_t*>(pPixels);
for (size_t x = 0; x < img->width; ++x)
{
const uint32_t alpha = ((*sPtr & 0xFF000000) >> 24);
minalpha = std::min(minalpha, alpha);
maxalpha = std::max(maxalpha, alpha);
++sPtr;
}
pPixels += rowPitch;
}
// If there are no non-zero alpha channel entries, we'll assume alpha is not used and force it to opaque
if (maxalpha == 0 && !(flags & TGA_FLAGS_ALLOW_ALL_ZERO_ALPHA))
{
opaquealpha = true;
hr = SetAlphaChannelToOpaque(img);
if (FAILED(hr))
{
image.Release();
return hr;
}
}
else if (minalpha == 255)
{
opaquealpha = true;
}
}
break;
case DXGI_FORMAT_B5G5R5A1_UNORM:
{
assert(image.GetImageCount() == 1);
const Image* img = image.GetImage(0, 0, 0);
if (!img)
{
image.Release();
return E_POINTER;
}
// Scan for non-zero alpha channel
uint32_t minalpha = 255;
uint32_t maxalpha = 0;
const uint8_t *pPixels = img->pixels;
if (!pPixels)
{
image.Release();
return E_POINTER;
}
const size_t rowPitch = img->rowPitch;
for (size_t h = 0; h < img->height; ++h)
{
auto sPtr = reinterpret_cast<const uint16_t*>(pPixels);
for (size_t x = 0; x < img->width; ++x)
{
const uint32_t alpha = (*sPtr & 0x8000) ? 255 : 0;
minalpha = std::min(minalpha, alpha);
maxalpha = std::max(maxalpha, alpha);
++sPtr;
}
pPixels += rowPitch;
}
// If there are no non-zero alpha channel entries, we'll assume alpha is not used and force it to opaque
if (maxalpha == 0 && !(flags & TGA_FLAGS_ALLOW_ALL_ZERO_ALPHA))
{
opaquealpha = true;
hr = SetAlphaChannelToOpaque(img);
if (FAILED(hr))
{
image.Release();
return hr;
}
}
else if (minalpha == 255)
{
opaquealpha = true;
}
}
break;
case DXGI_FORMAT_B8G8R8X8_UNORM:
// Should never be trying to direct-read 24bpp
return E_FAIL;
default:
break;
}
}
else // RLE || EXPAND || INVERTX || PALETTED || !INVERTY
{
std::unique_ptr<uint8_t[]> temp(new (std::nothrow) uint8_t[remaining]);
if (!temp)
{
image.Release();
return E_OUTOFMEMORY;
}
#ifdef _WIN32
if (!ReadFile(hFile.get(), temp.get(), static_cast<DWORD>(remaining), &bytesRead, nullptr))
{
image.Release();
return HRESULT_FROM_WIN32(GetLastError());
}
if (bytesRead != remaining)
{
image.Release();
return E_FAIL;
}
#else
inFile.read(reinterpret_cast<char*>(temp.get()), remaining);
if (!inFile)
{
image.Release();
return E_FAIL;
}
#endif
size_t paletteOffset = 0;
uint8_t palette[256 * 4] = {};
if (convFlags & CONV_FLAGS_PALETTED)
{
hr = ReadPalette(header, temp.get(), remaining, flags, palette, paletteOffset);
if (FAILED(hr))
{
image.Release();
return hr;
}
if ((remaining - paletteOffset) == 0)
{
image.Release();
return HRESULT_E_HANDLE_EOF;
}
}
if (convFlags & CONV_FLAGS_RLE)
{
hr = UncompressPixels(temp.get() + paletteOffset, remaining - paletteOffset,
flags, image.GetImage(0, 0, 0), convFlags);
}
else
{
hr = CopyPixels(temp.get() + paletteOffset, remaining - paletteOffset,
flags, image.GetImage(0, 0, 0), convFlags, palette);
}
if (FAILED(hr))
{
image.Release();
return hr;
}
if (hr == S_FALSE)
opaquealpha = true;
}
// Optional TGA 2.0 footer & extension area
const TGA_EXTENSION* ext = nullptr;
TGA_EXTENSION extData = {};
{
TGA_FOOTER footer = {};
#ifdef _WIN32
if (SetFilePointer(hFile.get(), -static_cast<int>(sizeof(TGA_FOOTER)), nullptr, FILE_END) != INVALID_SET_FILE_POINTER)
{
if (!ReadFile(hFile.get(), &footer, sizeof(TGA_FOOTER), &bytesRead, nullptr))
{
image.Release();
return HRESULT_FROM_WIN32(GetLastError());
}
if (bytesRead != sizeof(TGA_FOOTER))
{
image.Release();
return E_FAIL;
}
}
#else // !WIN32
inFile.seekg(-static_cast<int>(sizeof(TGA_FOOTER)), std::ios::end);
if (inFile)
{
inFile.read(reinterpret_cast<char*>(&footer), sizeof(TGA_FOOTER));
if (!inFile)
{
image.Release();
return E_FAIL;
}
}
#endif
if (memcmp(footer.Signature, g_Signature, sizeof(g_Signature)) == 0)
{
if (footer.dwExtensionOffset != 0
&& ((footer.dwExtensionOffset + sizeof(TGA_EXTENSION)) <= len))
{
#ifdef _WIN32
const LARGE_INTEGER filePos = { { static_cast<DWORD>(footer.dwExtensionOffset), 0 } };
if (SetFilePointerEx(hFile.get(), filePos, nullptr, FILE_BEGIN))
{
if (ReadFile(hFile.get(), &extData, sizeof(TGA_EXTENSION), &bytesRead, nullptr)
&& bytesRead == sizeof(TGA_EXTENSION))
{
ext = &extData;
}
}
#else // !WIN32
inFile.seekg(static_cast<std::streampos>(footer.dwExtensionOffset), std::ios::beg);
if (inFile)
{
inFile.read(reinterpret_cast<char*>(&extData), sizeof(TGA_EXTENSION));
if (inFile)
{
ext = &extData;
}
}
#endif
}
}
}
if (!(flags & TGA_FLAGS_IGNORE_SRGB))
{
mdata.format = GetSRGBFromExtension(ext, mdata.format, flags, &image);
}
if (metadata)
{
memcpy(metadata, &mdata, sizeof(TexMetadata));
if (opaquealpha)
{
metadata->SetAlphaMode(TEX_ALPHA_MODE_OPAQUE);
}
else if (ext)
{
metadata->SetAlphaMode(GetAlphaModeFromExtension(ext));
}
}
return S_OK;
}
//-------------------------------------------------------------------------------------
// Save a TGA file to memory
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT DirectX::SaveToTGAMemory(
const Image& image,
TGA_FLAGS flags,
Blob& blob,
const TexMetadata* metadata) noexcept
{
if ((flags & (TGA_FLAGS_FORCE_LINEAR | TGA_FLAGS_FORCE_SRGB)) != 0 && !metadata)
return E_INVALIDARG;
if (!image.pixels)
return E_POINTER;
TGA_HEADER tga_header = {};
uint32_t convFlags = 0;
HRESULT hr = EncodeTGAHeader(image, tga_header, convFlags);
if (FAILED(hr))
return hr;
blob.Release();
// Determine memory required for image data
size_t rowPitch, slicePitch;
hr = ComputePitch(image.format, image.width, image.height, rowPitch, slicePitch,
(convFlags & CONV_FLAGS_888) ? CP_FLAGS_24BPP : CP_FLAGS_NONE);
if (FAILED(hr))
return hr;
hr = blob.Initialize(TGA_HEADER_LEN
+ slicePitch
+ (metadata ? sizeof(TGA_EXTENSION) : 0)
+ sizeof(TGA_FOOTER));
if (FAILED(hr))
return hr;
// Copy header
auto destPtr = blob.GetBufferPointer();
assert(destPtr != nullptr);
uint8_t* dPtr = destPtr;
memcpy(dPtr, &tga_header, TGA_HEADER_LEN);
dPtr += TGA_HEADER_LEN;
const uint8_t* pPixels = image.pixels;
assert(pPixels);
for (size_t y = 0; y < image.height; ++y)
{
// Copy pixels
if (convFlags & CONV_FLAGS_888)
{
Copy24bppScanline(dPtr, rowPitch, pPixels, image.rowPitch);
}
else if (convFlags & CONV_FLAGS_SWIZZLE)
{
SwizzleScanline(dPtr, rowPitch, pPixels, image.rowPitch, image.format, TEXP_SCANLINE_NONE);
}
else
{
CopyScanline(dPtr, rowPitch, pPixels, image.rowPitch, image.format, TEXP_SCANLINE_NONE);
}
dPtr += rowPitch;
pPixels += image.rowPitch;
}
uint32_t extOffset = 0;
if (metadata)
{
// metadata is only used for writing the TGA 2.0 extension header
auto ext = reinterpret_cast<TGA_EXTENSION*>(dPtr);
SetExtension(ext, flags, *metadata);
extOffset = static_cast<uint32_t>(dPtr - destPtr);
dPtr += sizeof(TGA_EXTENSION);
}
// Copy TGA 2.0 footer
auto footer = reinterpret_cast<TGA_FOOTER*>(dPtr);
footer->dwDeveloperOffset = 0;
footer->dwExtensionOffset = extOffset;
memcpy(footer->Signature, g_Signature, sizeof(g_Signature));
return S_OK;
}
//-------------------------------------------------------------------------------------
// Save a TGA file to disk
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT DirectX::SaveToTGAFile(
const Image& image,
TGA_FLAGS flags,
const wchar_t* szFile,
const TexMetadata* metadata) noexcept
{
if (!szFile)
return E_INVALIDARG;
if ((flags & (TGA_FLAGS_FORCE_LINEAR | TGA_FLAGS_FORCE_SRGB)) != 0 && !metadata)
return E_INVALIDARG;
if (!image.pixels)
return E_POINTER;
TGA_HEADER tga_header = {};
uint32_t convFlags = 0;
HRESULT hr = EncodeTGAHeader(image, tga_header, convFlags);
if (FAILED(hr))
return hr;
// Create file and write header
#ifdef _WIN32
ScopedHandle hFile(safe_handle(CreateFile2(
szFile,
GENERIC_WRITE, 0, CREATE_ALWAYS,
nullptr)));
if (!hFile)
{
return HRESULT_FROM_WIN32(GetLastError());
}
auto_delete_file delonfail(hFile.get());
#else
std::ofstream outFile(std::filesystem::path(szFile), std::ios::out | std::ios::binary | std::ios::trunc);
if (!outFile)
return E_FAIL;
#endif
// Determine size for TGA pixel data
size_t rowPitch, slicePitch;
hr = ComputePitch(image.format, image.width, image.height, rowPitch, slicePitch,
(convFlags & CONV_FLAGS_888) ? CP_FLAGS_24BPP : CP_FLAGS_NONE);
if (FAILED(hr))
return hr;
if (slicePitch < 65535)
{
// For small images, it is better to create an in-memory file and write it out
Blob blob;
hr = SaveToTGAMemory(image, flags, blob, metadata);
if (FAILED(hr))
return hr;
// Write blob
#ifdef _WIN32
const DWORD bytesToWrite = static_cast<DWORD>(blob.GetBufferSize());
DWORD bytesWritten;
if (!WriteFile(hFile.get(), blob.GetConstBufferPointer(), bytesToWrite, &bytesWritten, nullptr))
{
return HRESULT_FROM_WIN32(GetLastError());
}
if (bytesWritten != bytesToWrite)
{
return E_FAIL;
}
#else
outFile.write(reinterpret_cast<const char*>(blob.GetConstBufferPointer()),
static_cast<std::streamsize>(blob.GetBufferSize()));
if (!outFile)
return E_FAIL;
#endif
}
else
{
// Otherwise, write the image one scanline at a time...
std::unique_ptr<uint8_t[]> temp(new (std::nothrow) uint8_t[rowPitch]);
if (!temp)
return E_OUTOFMEMORY;
// Write header
#ifdef _WIN32
DWORD bytesWritten;
if (!WriteFile(hFile.get(), &tga_header, TGA_HEADER_LEN, &bytesWritten, nullptr))
{
return HRESULT_FROM_WIN32(GetLastError());
}
if (bytesWritten != TGA_HEADER_LEN)
return E_FAIL;
#else
outFile.write(reinterpret_cast<char*>(&tga_header), TGA_HEADER_LEN);
if (!outFile)
return E_FAIL;
#endif
if (rowPitch > UINT32_MAX)
return HRESULT_E_ARITHMETIC_OVERFLOW;
// Write pixels
const uint8_t* pPixels = image.pixels;
for (size_t y = 0; y < image.height; ++y)
{
// Copy pixels
if (convFlags & CONV_FLAGS_888)
{
Copy24bppScanline(temp.get(), rowPitch, pPixels, image.rowPitch);
}
else if (convFlags & CONV_FLAGS_SWIZZLE)
{
SwizzleScanline(temp.get(), rowPitch, pPixels, image.rowPitch, image.format, TEXP_SCANLINE_NONE);
}
else
{
CopyScanline(temp.get(), rowPitch, pPixels, image.rowPitch, image.format, TEXP_SCANLINE_NONE);
}
pPixels += image.rowPitch;
#ifdef _WIN32
if (!WriteFile(hFile.get(), temp.get(), static_cast<DWORD>(rowPitch), &bytesWritten, nullptr))
{
return HRESULT_FROM_WIN32(GetLastError());
}
if (bytesWritten != rowPitch)
return E_FAIL;
#else
outFile.write(reinterpret_cast<char*>(temp.get()), rowPitch);
if (!outFile)
return E_FAIL;
#endif
}
uint32_t extOffset = 0;
if (metadata)
{
// metadata is only used for writing the TGA 2.0 extension header
TGA_EXTENSION ext = {};
SetExtension(&ext, flags, *metadata);
#ifdef _WIN32
extOffset = SetFilePointer(hFile.get(), 0, nullptr, FILE_CURRENT);
if (extOffset == INVALID_SET_FILE_POINTER)
{
return E_FAIL;
}
if (!WriteFile(hFile.get(), &ext, sizeof(TGA_EXTENSION), &bytesWritten, nullptr))
{
return HRESULT_FROM_WIN32(GetLastError());
}
if (bytesWritten != sizeof(TGA_EXTENSION))
return E_FAIL;
#else
extOffset = static_cast<uint32_t>(outFile.tellp());
if (!outFile)
return E_FAIL;
outFile.write(reinterpret_cast<char*>(&ext), sizeof(TGA_EXTENSION));
if (!outFile)
return E_FAIL;
#endif
}
// Write TGA 2.0 footer
TGA_FOOTER footer = {};
footer.dwExtensionOffset = extOffset;
memcpy(footer.Signature, g_Signature, sizeof(g_Signature));
#ifdef _WIN32
if (!WriteFile(hFile.get(), &footer, sizeof(TGA_FOOTER), &bytesWritten, nullptr))
{
return HRESULT_FROM_WIN32(GetLastError());
}
if (bytesWritten != sizeof(footer))
return E_FAIL;
#else
outFile.write(reinterpret_cast<char*>(&footer), sizeof(TGA_FOOTER));
if (!outFile)
return E_FAIL;
#endif
}
#ifdef _WIN32
delonfail.clear();
#endif
return S_OK;
}
//--------------------------------------------------------------------------------------
// Adapters for /Zc:wchar_t- clients
#if defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED)
namespace DirectX
{
HRESULT __cdecl GetMetadataFromTGAFile(
_In_z_ const __wchar_t* szFile,
_In_ TGA_FLAGS flags,
_Out_ TexMetadata& metadata) noexcept
{
return GetMetadataFromTGAFile(reinterpret_cast<const unsigned short*>(szFile), flags, metadata);
}
HRESULT __cdecl LoadFromTGAFile(
_In_z_ const __wchar_t* szFile,
_In_ TGA_FLAGS flags,
_Out_opt_ TexMetadata* metadata,
_Out_ ScratchImage& image) noexcept
{
return LoadFromTGAFile(reinterpret_cast<const unsigned short*>(szFile), flags, metadata, image);
}
HRESULT __cdecl SaveToTGAFile(_In_ const Image& image,
_In_ TGA_FLAGS flags,
_In_z_ const __wchar_t* szFile,
_In_opt_ const TexMetadata* metadata) noexcept
{
return SaveToTGAFile(image, flags, reinterpret_cast<const unsigned short*>(szFile), metadata);
}
}
#endif // !_NATIVE_WCHAR_T_DEFINED